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Course Schedule 
Parallelizing Compilers for Multicore 

During the period 7th June– 18th June 

June  7th - 11th,  10:00 - 13:00    C6-E101 
June 14th - 18th, 10:00 - 13:00    C6-E101 

Grading will be based on several in-class exercises and class interaction  

Office hours: by appointment eigenman@purdue.edu 
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Course Content 

•  Introduction and motivation 
•  Detecting parallelism 
•  Mapping parallelism to the machine 
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Optimizing Compilers are the 
Center of the Universe  

Today Tomorrow 

Fortran 
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Workstation 
Multicores 

NOW 

Problem 
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Resources 

Translate increasingly advanced human interfaces 
onto increasingly sophisticated  target machines 
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Optimizing compilers are of particular importance where performance matters 
most. Hence our focus on High-Performance Computing. 
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Issues in Optimizing / 
Parallelizing Compilers 

The Goal: 
•  We would like to run standard (C, Java, 

Fortran) programs on parallel computers 
leads to the following high-level issues: 
•  How to detect parallelism? 
•  How to map parallelism onto the machine? 
•  How to create a good compiler architecture? 
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Detecting Parallelism 

•  Program analysis techniques 
•  Data dependence analysis 
•  Dependence removing techniques 
•  Parallelization in the presence of 

dependences 
•  Runtime dependence detection 
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Mapping Parallelism onto the 
Machine 

•  Exploiting parallelism at many levels  
–  Multiprocessors and multi-cores (our focus) 
–  Distributed memory machines (clusters or global 

networks) 
–  Heterogeneous architectures 
–  Instruction-level parallelism 
–  Vector machines 

•  Locality enhancement 
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Parallelizing Compiler Books and 
Survey Papers 

Books: 
•  Ken Kennedy, John Allen: Optimizing Compilers for Modern Architectures: A 

Dependence-based Approach (2001)  
•  Michael Wolfe: High-Performance Compilers for Parallel Computing (1996) 
•  Utpal Banerjee: several books on Data Dependence Analysis and 

Transformations 

Survey Papers: 
•  Utpal Banerjee, Rudolf Eigenmann, Alexandru Nicolau, and David Padua.  

Automatic Program Parallelization.  Proceedings of the IEEE, 81(2), February 
1993. 

•  David F. Bacon, Susan L. Graham, Compiler transformations for high-
performance computing, ACM Computing Surveys (CSUR), Volume 26, Issue 
4, December 1994, Pages: 345 - 420,1994 
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Course Approach 
There are many schools on optimizing compilers. 

Our approach is  performance-driven 
Initial course schedule: 

–  Blume study - the simple techniques 
–  The Cedar Fortran Experiments 
–  Analysis and Transformation techniques in the 

Cetus compiler 
–  Additional transformations (for GPGPUs and other 

architectures) 
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The Heart of Automatic 
Parallelization 

Data Dependence Testing 

If a loop does not have data dependences 
between any two iterations then it can be 
safely executed in parallel 

In science/engineering applications, loop 
parallelism is most important. In non-
numerical programs other control structures 
are also important 
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Data Dependence Tests: 
Motivating Examples 

Statement Reordering 
can these two statements be 
swapped? 

DO i=1,100,2 
   B(2*i) = ... 
      ...    = B(3*i) 
ENDDO 

A data dependence exists between two data references iff: 
•  both references access the same storage location 
•  at least one of them is a write access 

DD testing is important not just for 
detecting parallelism 

Loop Parallelization 
Can the iterations of this 
loop be run concurrently? 

DO i=1,100,2 
   B(2*i) = ... 
      ...    = B(2*i) +B(3*i) 
ENDDO 

DD testing to detect parallelism 
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This course would now be finished if: 

•  the mathematical formulation of the data 
dependence problem had an accurate and 
fast solution, and 

•  there were enough loops in programs without 
any data dependences, and 

•  dependence-free code could be executed by 
today’s multicores directly and efficiently. 

There are enough hard problems to fill several 
courses! 
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Part I: 
Performance of Basic 
Automatic Program 

Parallelization 
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15 Years of Parallelizing 
Compilers 

A Performance study at the beginning of 
the 90es (Blume study) 
Analyzed the performance of state-of-the-art 

parallelizers and vectorizers using the 
Perfect Benchmarks. 

William Blume and Rudolf Eigenmann, Performance Analysis of 
Parallelizing Compilers on the Perfect Benchmarks Programs, 
IEEE Transactions on Parallel and Distributed Systems, 3(6), 
November 1992, pages 643--656.  
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Overall Performance 
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Performance of Individual Techniques 
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Transformations measured in 
the “Blume Study” 

•  Scalar expansion 
•  Reduction parallelization 
•  Induction variable substitution 
•  Loop interchange 
•  Forward Substitution 
•  Stripmining 
•  Loop synchronization 
•  Recurrence substitution 
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Scalar Expansion 
DO j=1,n 
    t = a(j)+b(j) 
    c(j) = t + t2 

ENDDO 

DO PARALLEL j=1,n 
PRIVATE t 
    t = a(j)+b(j) 
    c(j) = t + t2 

ENDDO 

DO PARALLEL j=1,n 
    t0(j) = a(j)+b(j) 
    c(j) = t0(j) + t0(j)2 

ENDDO 

Privatization 

Expansion 
We assume a shared-memory model: 

•  by default, data is shared, i.e., all 
processors can see and modify it 
•  processor share the work of 
parallel loops  

flow 

anti 

output 
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Parallel Loop Syntax and 
Semantics 

!$OMP PARALLEL PRIVATE(<private data>) 
   <preamble code> 
!$OMP DO 
DO i = ilow, iup 

  <loop body code> 

ENDDO 
!$OMP END DO 
   <postamble code> 
!$OMP END PARALLEL 

OpenMP: 

executed by all participating processors (threads) exactly once 

work (iterations) shared by participating processors (threads) 
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Reduction Parallelization 

DO j=1,n 
    sum = sum + a(j) 

ENDDO 

!$OMP PARALLEL, PRIVATE (s) 
s = 0 
!$OMP DO 
DO j=1,n 
   s = s + a(j) 
ENDDO 
!$OMP ENDDO 
!$OMP ATOMIC 
        sum=sum+s 
!$ OMP END PARALLEL !$OMP PARALLEL DO 

!$OMP+REDUCTION(+:sum) 
DO j=1,n 
    sum = sum + a(j) 

ENDDO 
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Induction Variable Substitution 
ind = ind0 
DO j = 1,n 
   a(ind) = b(j) 
   ind = ind+k 
ENDDO 

ind = ind0 
DO PARALLEL j = 1,n 
     a(ind0+k*(j-1)) = b(j) 
ENDDO 

Note, this is the reverse of strength reduction, an important 
transformation in classical (code generating) compilers. 

real d(20,100) 
DO j=1,n 
  d(1,j)=0 
ENDDO 

loop: 
 ... 
R0   ← &d+20*j 
(R0) ← 0 
... 
jump loop 

R0 ← &d 
loop: 
 ... 
(R0) ← 0 
... 
R0   ← R0+20 
jump loop 
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Forward Substitution 
m = n+1 
… 
DO j=1,n 
    a(j) = a(j+m) 

ENDDO 

m = n+1 
… 
DO j=1,n 
    a(j) = a(j+n+1) 

ENDDO 

a = x*y 
b = a+2 
c = b + 4 

a = x*y 
b = x*y+2 
c = x*y + 6 

dependences no dependences 
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Stripmining 

DO j=1,n 
    a(j) = b(j) 

ENDDO 

DO i=1,n,strip 
    DO j=i,min(i+strip-1,n)     
        a(j) = b(j) 
    ENDDO 

ENDDO 

There are many variants of stripmining 
(sometimes called loop blocking) 

1 n 

strip 
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Loop Synchronization 

DO j=1,n 
    a(j) = b(j) 
    c(j) = a(j)+a(j-1) 

ENDDO 

DOACROSS j=1,n 
    a(j) = b(j) 
    post(current_iteration) 
    wait(current_iteration-1) 
    c(j) = a(j)+a(j-1) 

ENDDO 
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Basic idea of the recurrence solver: 

Recurrence Substitution 
DO j=1,n 
    a(j) = c0+c1*a(j)+c2*a(j-1)+c3*a(j-2) 

ENDDO 

call rec_solver(a(1),n,c0,c1,c2,c3) 

DO j=1,40 
   a(j) = a(j) + a(j-1) 
ENDDO             

DO j=1,10 
   a(j) = a(j) + a(j-1) 
ENDDO 

DO j=11,20 
   a(j) = a(j) + a(j-1) 
ENDDO 

DO j=21,30 
   a(j) = a(j) + a(j-1) 
ENDDO 

DO j=31,40 
   a(j) = a(j) + a(j-1) 
ENDDO 

Error:            0                              ∆a(10)                  ∆a(10)+∆a(20)       ∆a(10)+∆a(20)+∆a
(30) 
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DO j= 1,m 
   DO i=1,n 
     a(i,j) =a(i,j)+a(i,j-1) 

   ENDDO 
ENDDO 

Loop Interchanging 

DO i= 1,n 
   DO j=1,m 
     a(i,j) = a(i,j)+a(i,j-1) 
   ENDDO 
ENDDO 

•  stride-1 references increase cache locality 
–  read: increase spatial locality 
–  write: avoid false sharing 

•   scheduling of outer loop is important (consider original loop nest): 
–  cyclic: no  locality w.r.t. to i loop 
–  block schedule: there may be some locality 
–  dynamic scheduling: chunk scheduling desirable 

•  impact of cache organization ? 
•  parallelism at outer position reduces loop fork/join overhead 
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Effect of Loop Interchanging 
Example: speedups of the most time-consuming loops 

in the ARC2D benchmark on 4-core machine 

0

2

4

6

8

10

STEPFX
DO230

STEPFX
DO210

 XPENTA
DO11

FILERX
DO39

Speedup

loop interchange applied in the 
process of parallelization 
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Execution Scheme for Parallel Loops 
1. Architecture supports parallel loops. Example: Alliant 

FX/8 (1980es) 
–  machine instruction for parallel loop 
–  HW concurrency bus supports loop scheduling 

a=0 
DO i=1,n 
   b(i) = 2 
ENDDO 
b=3 

store #0,<a> 
load <n>,D6 
sub 1,D6 
load &b,A1 
cdoall D6 
   store #2,A1(D7.r) 
endcdoall   
store #3,<b> 

D7 is reserved 
for the loop 
variable. 
Starts at 0. 
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Execution Scheme for Parallel Loops 

2. Microtasking scheme (dates back to early 
IBM mainframes) 

p1 p2 p3 p4 
sequential 

sequential 

sequential 

parallel 

parallel 

problem: 
loop startup 
must be very fast 

init_helper_tasks 

wakeup_helpers 

wakeup_helpers 
sleep_helpers 

sleep_helpers 

microtask startup: 1 µs 
pthreads startup: up to 100 µs 
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Compiler Transformation for the 
Microtasking Scheme 

a=0 
DO i=1,n 
   b(i) = 2 
ENDDO 
b=3 

call init_microtasking() // once at program start 
... 
a=0 
call loop_scheduler(loopsub,i,1,n,b) 
b=3 

subroutine loopsub(mytask,lb,ub,b) 
DO i=lb,ub 
   b(i) = 2 
ENDDO 
END 

Master task 
  loop_scheduler: 
     partition loop iterations 
     wakeup 
     call loopsub(...) 
     barrier (all flags reset) 
     return 

Helper task 
 loop: 
   wait for flag 
   call loopsub(id,lb,ub,param) 
   reset flag 

Helper 1: 
loopsub 
 lb,ub 
param 

flag 

shared data 
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Performance of  
Parallelization Techniques 

Rudolf Eigenmann, Jay Hoeflinger, and David Padua, On the 
AutomaticParallelization of the Perfect Benchmarks.   IEEE Transactions 
on Parallel and Distributed Systems, volume 9, number 1, January 1997, 
pages 5-23.  
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Compiler Evaluation (1990) 
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Compiler Evaluation (1990) 
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Improving Compiler-
Parallelized Code (1995) 

- beyond basic techniques - 
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Effect of 
Array 

Privatization 
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Effect of Advanced  
Parallel Reductions 
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Effect of Generalized 
Induction Variable Substitution 
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Effect of Balanced Stripmining 
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Effect of Increasing 
Parallel Loop Granularity 
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Effect of  
Locality Enhancement 
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Effect of Runtime  
Data-Dependence Testing 
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Part II 
A Catalog of Advanced 

Analysis and Transformation 
Techniques 

•  1 Data-dependence testing 
•  2 Parallelism enabling transformations 
•  3 Techniques for multiprocessors/multicores 
•  4 Techniques for heterogeneous multicores 
•  5 Techniques for other architectures  
      (vector, distributed-memory,…) 
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1 Data Dependence Testing 

DO i=1,n 
   a(4*i) = . . . 
   . . .    =  a(2*i+1) 
ENDDO 

the question to answer: 
can 4*i ever be equal to 2*i+1 within i ∈[1,n] ? 

In general: given 
•  two subscript functions f and g and 
•  loop bounds lower, upper. 
Does  
   f(i1) = g(i2) have a solution such that  
   lower  ≤  i1, i2 ≤ upper ? 

Earlier, we have considered the simple case of a 
1-dimensional array enclosed by a single loop: 
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Data Dependence Tests:  Concepts 
Terms for data dependences between statements of loop iterations. 
•  Distance (vector): indicates how many iterations apart are source and sink of  

dependence. 
•  Direction (vector): is basically the sign of the distance. There are different 

notations: (<,=,>) or (-1,0,+1) meaning dependence (from earlier to later, 
within the same, from later to earlier) iteration. 

•  Loop-carried (or cross-iteration) dependence and non-loop-carried (or loop-
independent) dependence: indicates whether or not a dependence exists 
within one iteration or across iterations. 

–  For detecting parallel loops, only cross-iteration dependences matter. 
–  equal dependences are relevant for optimizations such as statement reordering 

and loop distribution. 

•  Data Dependence Graph: a graph showing statements as nodes and 
dependences between them as edges. For loops, usually there is only one 
node per statement instance.  

•  Iteration Space Graphs: the un-abstracted form of a dependence graph with 
one node per statement instance. The statements of one loop iteration may 
be represented as a single node. 

R. Eigenmann, Parallelizing Compilers for Multicores , Summer  2010 



DDTests:      doubly-nested loops 

•  Multiple loop indices: 
DO i=1,n 
   DO j=1,m 
      X(a1*i + b1*j + c1) = . . . 
      . . .    =  X(a2*i + b2*j + c2) 
   ENDDO 
ENDDO 

dependence problem: 
a1*i1 - a2*i2 + b1*j1 - b2*j2  = c2 - c1 
1 ≤  i1, i2  ≤ n 
1 ≤  j1, j2  ≤ m 

Almost all DD tests expect the coefficients ax to be integer constants. 
Such subscript expressions are called affine. 
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DDTests:      even more complexity 

•  Multiple loop indices, multi-dimensional array: 
DO i=1,n 
   DO j=1,m 
      X(a1*i1 + b1*j1 + c1, d1*i1 + e1*j1 + f1) = . . . 
                     . . .    =  X(a2*i2 + b2*j2 + c2, d2*i2 +e2*j2 + f2) 
   ENDDO 
ENDDO 

dependence problem: 
a1*i1 - a2*i2 + b1*j1 - b2*j2  = c2 - c1 
d1*i1 - d2*i2 + e1*j1 - e2*j2  = f2 - f1 
1 ≤  i1, i2  ≤ n 
1 ≤  j1, j2  ≤ m 
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Data Dependence Tests: 
The Simple Case 

Note: variables i1, i2 are integers → diophantine equations. 

Equation a * i1 - b* i2 = c has a solution if and only iff 
                gcd(a,b)  (evenly) divides c 

    in our example this means:   gcd(4,2)=2, which does not 
divide 1 and thus there is no dependence. 

If there is a solution, we can test if it lies within the loop 
bounds. If not, then there is no dependence. 
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Euklid Algorithm: find gcd(a,b) 
   Repeat 
       a ← a mod b 
       swap a,b 
   Until b=0               

Performing the GCD Test 
•  The diophantine equation 
          a1*i1 + a2*i2 +...+ an*in  = c 
has a solution iff gcd(a1,a2,...,an) evenly divides c 

Examples: 
   15*i +6*j -9*k = 12   has a solution    gcd=3 
   2*i + 7*j = 3              has a solution    gcd=1 
   9*i + 3*j + 6*k = 5     has no solution  gcd=3 

→The resulting a is the gcd 

for more than two numbers: 
gcd(a,b,c) = (gcd(a,gcd(b,c)) 
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Other DD Tests 

•  The GCD test is simple but not accurate 
•  Other tests 

– Banerjee test: accurate state-of-the-art test 
– Omega test: “precise” test, most accurate 

for linear subscripts 
– Range test: handles non-linear and 

symbolic subscripts 
– many variants of these tests 
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The Banerjee(-Wolfe) Test 

Basic idea: 
if the total subscript range accessed by ref1 

does not overlap with the range accessed 
by ref2, then ref1 and ref2 are 
independent. 

DO j=1,100                 ranges accesses: 
   a(j) = …                   [1:100] 
   …   = a(j+200)         [201:300] 
ENDDO                       independent 
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Banerjee(-Wolfe) Test continued 

Weakness of the test: 

DO j=1,100                 ranges accessed: 
   a(j) = …                   [1:100] 
   …   = a(j+5)             [6:105] 
ENDDO                       independent ? 

We did not take into consideration that only loop-carried 
dependences matter for parallelization. 

A loop-carried dependence only exists, if the reference in some 
iteration, j1, conflicts with a reference in some later iteration, j2> j1  

Consider this dependence 
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Banerjee(-Wolfe) Test continued 

•  Solution idea:  
for loop-carried dependences, make use of the fact 

that j in ref2 is greater than in ref1 

DO j=1,100 
 a(j) = …  
    …   = a(j+5)  
ENDDO 

This is commonly referred to as the  
Banerjee test with direction vectors. 

Ranges accessed by 
 iteration j1 and any other 
 iteration j2, where j1 < j2 : 
   [j1] 
   [j1+6:105] 
 Independent for “>” direction 

Clearly, this loop has a 
dependence. It is an 
anti-dependence from a(j
+5) to a(j) 

Still considering the potential dependence 
from a(j) to a(j+5) 
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Considering direction vectors can increase the complexity of the DD test 
substantially. For long vectors (corresponding to deeply-nested 
loops), there are many possible combinations of directions. 

A possible algorithm:  
1.  try (*,*…*) , i.e., do not consider directions 
2.  (if not independent) try (<,*,*…*), (=,*,*…*) 
3.  (if still not independent) try (<,<,*…*),(<,>,*…*) ,(<,=,*…*) 

                                                 (=,<,*…*),(=,>,*…*) ,(=,=,*…*) 
. . . 
(This forms a tree) 

DD Testing with Direction Vectors 

*,  * , . . . , * 
=  =          = 
<  <          < 
    >          > 

(d1,d2,…,dn) 
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Non-linear and Symbolic DD Testing 

Weakness of most data dependence tests: 
subscripts and loop bounds must be affine, 
i.e., linear with integer-constant coefficients 

Approach of the Range Test:  
capture subscript ranges symbolically 
compare ranges: find their upper and lower bounds 

by determining monotonicity. Monotonically 
increasing/decreasing ranges can be compared by 
comparing their upper and lower bounds. 
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The Range Test 
Basic idea : 
1. Find the range of array accesses made in a given 

loop iteration 
2. If the upper(lower) bound of this range is less

(greater) than the lower(upper) bound of the range 
accesses in the next iteration, then there is no cross-
iteration dependence. 

    Example: testing independence of the outer loop: 

DO i=1,n 
   DO j=1,m 
      A(i*m+j) = 0 
   ENDDO 
ENDDO 

range of A accessed in iteration ix:   [ix*m+1:(ix+1)*m] 

range of A accessed in iteration ix+1:   [(ix+1)*m+1:(ix+2)*m] 

ubx 

lbx+1 
ubx <  lbx+1  ⇒ no cross-iteration dependence 
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Range Test  continued 
DO i1=L1,U1 
   ... 
   DO in=Ln,Un 
       A(f(i0,...in)) = ... 
             ...      = A(g(i0,...in))  
   ENDDO 
  ... 
ENDDO 

Assume f,g are monotonically increasing w.r.t. all ix: 
  find upper bound of access range at loop k: 
      successively substitute ix with Ux, x={n,n-1,...,k} 
  lowerbound is computed analogously     

If f,g are monotonically decreasing w.r.t. some iy, 
then substitute Ly when computing the upper 
bound.   

Determining monotonicity: consider d = f(...,ik,...) - f(...,ik-1,...) 
 If d>0 (for all values of ik) then f is monotonically increasing w.r.t. k 
 If d<0 (for all values of ik) then f is monotonically decreasing w.r.t. k 

What about symbolic coefficients? 
•  in many cases they cancel out 
•  if not, find their range (i.e., all possible values they can assume at this point 
in the program), and replace them by the upper or lower bound of the range. 

we need 
 range  

analysis 

we need powerful expression  
manipulation and comparison 

utilities  
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Range Test :  
handling non-contiguous ranges 

DO i1=1,u1 
   DO i2=1,u2 
       A(n*i1+m*i2)) = … 
   ENDDO 
ENDDO 

The basic Range Test finds 
independence   
of the outer loop  
    if n >= u2 and m=1 
But not  
    if n=1 and m>=u1 

Issues:  
•  legality of loop interchanging,  
•  change of parallelism as a result of loop interchanging 

Idea:  
  - temporarily (during program analysis) interchange the loops,  
  - test independence,  
  - interchange back 
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Some Engineering Tasks and 
Questions for DD Test Pass Writers 

- Start with the simple case: linear (affine) subscripts, single nests with 1-dim arrays. Subscript  
and loop bounds are integer constants. Stride 1 loop, lower bound =1 

- Deal with multiple array dims and loop nests 
- Add capabilities for non-stride-1 loops and lower bounds ≠1 
- How to deal with symbolic subscript coefficients and bounds 
- Ignore dependences in private variables and reductions 
- Generate DD vectors 
- Mark parallel loops 
- Things to think about: 
  -- how to handle loop-variant coefficients 
  -- how to deal with private, reduction, induction variables 
  -- how to represent DD information 
  -- how to display the DD info 
  -- how to deal with non-parallelizable loops (IO op, function calls, other?) 
  -- how to find eligible DO loops?  
  -- how to find eligible loop bounds, array subscripts? 
  -- what is the result of the pass? Generate DD info or set parallel loop flags? 
  -- what symbolic analysis capabilities are needed? 
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Data-Dependence Test, References 
•  Banerjee/Wolfe test 

–  M.Wolfe, U.Banerjee, "Data Dependence and its Application to Parallel 
Processing", Int. J. of Parallel Programming, Vol.16, No.2, pp.137-178, 
1987"

•  Power Test"
–  M. Wolfe and C.W. Tseng, The Power Test for Data Dependence, IEEE 

Transactionson Parallel and Distributed Systems, IEEE Computer Society, 
3(5), 591-601,1992. 

•  Range test 
–  William Blume and Rudolf Eigenmann. Non-Linear and Symbolic Data 

Dependence Testing, IEEE Transactions of Parallel and Distributed 
Systems, Volume 9, Number 12, pages 1180-1194, December 1998. 

•  Omega test 
–  William Pugh. The Omega test: a fast and practical integer programming 

algorithm for dependence. Proceedings of the 1991 ACM/IEEE Conference 
on Supercomputing,1991 

•  I Test 
–  Xiangyun Kong, David Klappholz, and Kleanthis Psarris, "The I Test: A New 

Test for Subscript Data Dependence," Proceedings of the 1990 International 
Conference on Parallel Processing, Vol. II, pages 204-211, August 1990. 
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2    Parallelism Enabling 
Techniques 
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DO i=1,n 
   t      =  A(i)+B(i) 
   C(i) =  t + t**2 
ENDDO 

!$OMP PARALLEL DO 
!$OMP+PRIVATE(t) 
DO i=1,n 
   t      =  A(i)+B(i) 
   C(i) =  t + t**2 
ENDDO 

scalar privatization array privatization 

loop-carried 
anti dependence 

Privatization 

!$OMP PARALLEL DO 
!$OMP+PRIVATE(t) 
DO j=1,n 
   t(1:m)    =  A(j,1:m)+B(j) 
   C(j,1:m) =  t(1:m) + t(1:m)**2 
ENDDO 

DO j=1,n 
   t(1:m)    =  A(j,1:m)+B(j) 
   C(j,1:m) =  t(1:m) + t(1:m)**2 
ENDDO 
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Array Privatization 
Capabilities needed for 

Array Privatization 
•  array Def-Use Analysis  
•  combining and intersecting 

subscript ranges 
•  representing subscript 

ranges 
•  representing conditionals 

under which sections are 
defined/used 

•  if ranges too complex to 
represent: overestimate 
Uses, underestimate Defs 

k = 5 
DO j=1,n 
   t(1:10)    =  A(j,1:10)+B(j) 
   C(j,iv) =  t(k) 
   t(11:m)    =  A(j,11:m)+B(j) 
   C(j,1:m) =  t(1:m) 
ENDDO 

DO j=1,n 
   IF (cond(j)) 
       t(1:m)    =  A(j,1:m)+B(j) 
      C(j,1:m) =  t(1:m) + t(1:m)**2 
   ENDIF 
   D(j,1) = t(1) 
ENDDO 

R. Eigenmann, Parallelizing Compilers for Multicores , Summer  2010 



Array Privatization continued 

Array privatization algorithm: 
•  For each loop nest: 

–  iterate from innermost to outermost loop: 
•  for each statement in the loop 

–  find definitions; add them to the existing definitions in 
this loop. 

–  find array uses; if they are covered by a definition, 
mark this array section as privatizable for this loop, 
otherwise mark it as upward-exposed in this loop;  

•  aggregate defined and upward-exposed, used ranges 
(expand from range per-iteration to entire iteration 
space); record them as Defs and Uses for this loop 
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Some Engineering Tasks and 
Questions for Privatization Pass Writers 

•  Start with scalar privatization 
•  Next step: array privatization with simple ranges (contiguous; no range 

merge) and singly-nested loops 
•  Deal with multiply-nested loops (-> range aggregation) 
•  Add capabilities for merging ranges 
•  Implement advanced range representation (symbolic bounds, non-

contiguous ranges) 
•  Deal with conditional definitions and uses (too advanced for this course) 
•  Things to think about 

–    what symbolic analysis capabilities are needed? 
–    how to represent advanced ranges? 
–    how to deal with loop-variant subscript terms? 
–    how to represent private variables? 
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Array Privatization, 
References 

•  Peng Tu and D. Padua. Automatic Array Privatization. 
Languages and Compilers for Parallel Computing. Lecture 
Notes in Computer Science 768, U. Banerjee, D. Gelernter, A. 
Nicolau, and D. Padua (Eds.), Springer-Verlag, 1994. "

•  Zhiyuan Li, Array Privatization for Parallel Execution of Loops, 
Proceedings of the 1992 ACM International Conference on 
Supercomputing"
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ind = k 
DO i=1,n 
   ind  = ind + 2 
   A(ind) = B(i) 
ENDDO 

loop-carried 
flow  
dependence 

Parallel DO i=1,n 
   A(k+2*i) = B(i) 
ENDDO 

Induction Variable Substitution 

This is the simple case of an induction variable 
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Generalized Induction Variables 
ind=k 
DO j=1,n 
   ind  = ind + j 
   A(ind) = B(j) 
ENDDO 

Parallel DO j=1,n 
   A(k+(j**2+j)/2) = B(j) 
ENDDO 

DO i=1,n 
   ind1  = ind1 + 1 
   ind2  = ind2 + ind1 
   A(ind2) = B(i) 
ENDDO 

DO i=1,n 
   DO j=1,i 
       ind  = ind + 1 
       A(ind) = B(i) 
   ENDDO 
ENDDO 
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Recognizing GIVs 
•  Pattern Matching:   

–   find  induction statements in a loop nest of the form   iv=iv
+expr   or  iv=iv*expr, where iv is an scalar integer. 

–  expr must be loop-invariant or another induction variable 
(there must not be cyclic relationships among IVs) 

–  iv must not be assigned in a non-induction statement 

•  Abstract interpretation: find symbolic increments of iv 
per loop iteration 

•  SSA-based recognition 
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Computing Closed Form, Substituting 
additive GIVs                   

Loop structure L0:     stmt type 

For j: 1..ub 
… 
S1:   iv=iv+exp             I 
… 
S2:  loop using iv         L 
… 
S3:  stmt using iv         U 
… 
Rof 

Step1: find the increment rel. to start of loop L 
FindIncrement(L) 
   inc=0 
   foreach si of type I,L 
      if type(si)=I        inc += exp  
      else  /* L */         inc+= FindIncrement(si)  
      inc_after[si]=inc 
   inc_into_loop[L]= ∑1

j-1(inc) ; inc may depend 
   return ∑1

ub(inc)                   ; on j 

Step 2: substitute IV 
Replace (L,initval) 
  val = initval 
  foreach si of type I,L,U 
      if type(si)=L      Replace(si,val) 
      if type(si)=L,I    val=initialval    
                                +inc_into_loop[L]  
                                +inc_after[si] 
      if type(si)=U   Substitute(si.expr,iv,val) 

Main: 
totalinc = FindIncrement(L0) 
Replace(L0,iv) 
InsertStatement(“iv =  iv+totalinc”)  

For coupled GIVs: begin with independent iv. 

Insert this  
statement 

If iv is live-out 
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Induction Variables, References 
•  B. Pottenger and R. Eigenmann. Idiom Recognition in the Polaris 

Parallelizing Compiler.  ACM Int. Conf. on Supercomputing (ICS'95), 
June 1995. (Extended version: Parallelization in the presence of 
generalized induction and reduction variables. 
www.ece.ecn.purdue.edu/~eigenman/reports/1396.pdf)"

•  Mohammad R. Haghighat , Constantine D. Polychronopoulos, Symbolic 
analysis for parallelizing compilers, ACM Transactions on Programming 
Languages and Systems (TOPLAS), v.18 n.4, p.477-518, July 1996 "

•  Michael P. Gerlek , Eric Stoltz , Michael Wolfe, Beyond induction 
variables: detecting and classifying sequences using a demand-driven 
SSA form, ACM Transactions on Programming Languages and 
Systems (TOPLAS), v.17 n.1, p.85-122, Jan. 1995"
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!$OMP PARALLEL PRIVATE(s) 
s=0 
!$OMP DO 
DO i=1,n 
     s=s+A(i) 
ENDDO 
!$OMP ATOMIC 
sum = sum+s 
!$OMP END PARALLEL DO i=1,n 

   sum  = sum + A(i) 
ENDDO 

loop-carried 
flow  
dependence 

Reduction  
Parallelization 

Note, OpenMP has a reduction clause,  
only reduction recognition is needed: 
!$OMP PARALLEL DO 
!$OMP+REDUCTION(+:sum) 
DO i=1,n 
   sum  = sum + A(i) 
ENDDO 

DO i=1,num_proc 
    s(i)=0 
ENDDO 
!$OMP PARALLEL DO  
DO i=1,n 
   s(my_proc)=s(my_proc)+A(i) 
ENDDO 
DO i=1,num_proc 
   sum=sum+s(i) 
ENDDO 

Scalar Reductions 
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Reduction Parallelization continued 

Reduction recognition and parallelization 
passes: 

induction variable recognition 
reduction recognition                
privatization 
data dependence test 
reduction parallelization 

compiler passes 

recognizes and 
annotates reduction 
variables 

for parallel loops with 
reduction variables, 
performance the 
reduction 
transformation 
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DIMENSION sum(m),s(m) 
!$OMP PARALLEL PRIVATE(s) 
s(1:m)=0 
!$OMP DO 
DO i=1,n 
     s(expr)=s(expr)+A(i) 
ENDDO 
!$OMP ATOMIC 
sum(1:m) = sum(1:m)+s(1:m) 
!$OMP END PARALLEL 

DIMENSION sum(m) 
DO i=1,n 
   sum(expr)  = sum(expr) + A(i) 
ENDDO 

Reduction Parallelization 
DIMENSION sum(m),s(m,#proc) 
!$OMP PARALLEL DO 
DO i=1,m 
DO j=1,#proc 
    s(i,j)=0 
ENDDO 
ENDDO 
!$OMP PARALLEL DO  
DO i=1,n 
   s(expr,my_proc)=s(expr,my_proc)+A(i) 
ENDDO 
!$OMP PARALLEL DO 
DO i=1,m 
DO j=1,#proc 
    sum(i)=sum(i)+s(i,j) 
ENDDO 
ENDDO 

Note, OpenMP 1.0 does not support such array reductions 

Array  Reductions (a.k.a. irregular or 
histogram reductions) 
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Recognizing Reductions 

•  Pattern Matching:   
–   find  reduction statements in a loop of the form                  

X=X ⊗ expr  ,	
�	
� 
where X is either scalar or an array expression (a[sub], 

where sub must be the same on the LHS and the RHS), 
⊗ is a reduction operation, such as +, *, min, max 

–  X must not be used in any non-reduction statement 
in this loop (however, there may be multiple reduction 
statements for X) 
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Performance Considerations 
for Reduction Parallelization 

•  Parallelized reductions execute substantially more code than 
their serial versions ⇒  overhead if the reduction (n) is small. 

•  In many cases (for large reductions) initialization and sum-up 
are insignificant.  

•  False sharing can occur, especially in expanded reductions, if 
multiple processors use adjacent array elements of the 
temporary reduction array (s).  

•  Expanded reductions exhibit more parallelism in the sum-up 
operation. 

•  Potential overhead in initialization, sum-up, and memory used 
for large, sparse array reductions ⇒ compression schemes can 
become useful. 
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DO j=1,n 
    a(j) = c0+c1*a(j)+c2*a(j-1)+c3*a(j-2) 

ENDDO 

call rec_solver(a,n,c0,c1,c2,c3) 

loop-carried 
flow  
dependence 

Recurrence Substitution 
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Basic idea of the recurrence solver: 

DO j=1,40 
   a(j) = a(j) + a(j-1) 
ENDDO             

DO j=1,10 
   a(j) = a(j) + a(j-1) 
ENDDO 

DO j=11,20 
   a(j) = a(j) + a(j-1) 
ENDDO 

DO j=21,30 
   a(j) = a(j) + a(j-1) 
ENDDO 

DO j=31,40 
   a(j) = a(j) + a(j-1) 
ENDDO 

Error:            0                              ∆a(10)                  ∆a(10)+∆a(20)       ∆a(10)+∆a(20)+∆a
(30) 

Recurrence Substitution continued 

Issues: 
•  Solver makes several parallel sweeps through the iteration space (n). Overhead can 
only be amortized if n is large. 

•  Many variants of the source code are possible. Transformations may be necessary to 
fit the library call format  additional overhead. 

      DO 40 II=3,IL                                                      
      I         = I  -1                                                  
      DO 40 J=2,JL                                                       
      DW(I,J,N) = DW(I,J,N)  -R*(DW(I,J,N)  -DW(I+1,J,N))                
   40 CONTINUE                                             

Example from FLO52 
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DO i=1,4 
  DO j=1,6 
     A(i,j)= A(i-1,j-1) 
  ENDDO 
ENDDO 

j 

i Iteration space graph:  
Shared regions show wavefronts of 
iterations in the transformed code that can 
be executed in parallel. 

!$OMP PARALLEL DO  
DO wave=1,? 
  i = ? 
  j = ? 
  wsize = ? 
  DO k=0,wsize-1 
       A(i+k,j+k)=A(i-1+k,j-1+k) 
  ENDDO 
ENDDO 

Loop Skewing 
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DO i=1,4 
  DO j=1,6 
     A(i,j)= A(i-1,j-1) 
  ENDDO 
ENDDO 

j 

i Iteration space graph:  
Shared regions show wavefronts of 
iterations in the transformed code that can 
be executed in parallel. 

!$OMP PARALLEL DO  
DO wave=1,9 
  i = max(5-wave,1) 
  j = max(-3+wave,1) 
  wsize = min(4,5-abs(wave-5)) 
  DO k=0,wsize-1 
       A(i+k,j+k)=A(i-1+k,j-1+k) 
  ENDDO 
ENDDO 

Loop Skewing 
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3  Techniques for 
Multiprocessors: 

Mapping parallelism to shared-memory 
machines 
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PARALLEL DO i=1,n 
  A(i) = B(i) 
ENDDO 

PARALLEL DO i=1,n 
  C(i) = A(i)+D(i) 
ENDDO 

PARALLEL DO i=1,n 
  A(i) = B(i) 
  C(i) = A(i)+D(i) 
ENDDO 

loop fusion 

Loop Fusion 

•  Loop fusion is the reverse of loop distribution. 
•  reduces the loop fork/join overhead. 
•  Both transformations reorder computation;  
   data dependences show legality 
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Enforcing Data Dependence 

•  Criterion for correct transformation and 
execution of a computation involving a data 
dependence with vector v : (=,…<,…*) 

   Let Ls be the outermost loop with non-“=” DD-direction : 
–  The direction at Ls must be “<” 
–  Ls must be executed serially 

Note that a data dependence is defined with respect to an 
ordered (usually serial) execution. A fully parallel loop by 
definition does not have any cross-iteration dependence. 

Ls 
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PARALLEL DO ij=1,n*m 
   i = 1 + (ij-1) DIV m 
   j = 1 + (ij-1) MOD m 
  A(i,j) = B(i,j) 
ENDDO    

PARALLEL DO i=1,n 
  DO j=1,m 
      A(i,j) = B(i,j) 
  ENDDO 
ENDDO 

loop 
coalescing 

Loop Coalescing 

Loop coalescing 
•  can increase the number of iterations of a parallel loop  load balancing 
•  adds additional computation  overhead 
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DO i=1,n 
  PARALLEL DO j=1,m 
      A(i,j) = A(i-1,j) 
  ENDDO 
ENDDO 

loop 
interchange 

PARALLEL DO j=1,m 
  DO i=1,n 
      A(i,j) = A(i-1,j)  
  ENDDO 
ENDDO 

Loop Interchange 

Loop interchange affects: 
•  granularity of parallel computation (compare the number of parallel loops started) 
•  locality of reference (compare the cache-line reuse) 
these two effects may impact the performance in the same or in opposite directions. 

Loop interchange is subject to DD legality constraints. 
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DO j=1,m 
   DO i=1,n 
      B(i,j)=A(i,j)+A(i,j-1) 
   ENDDO 
ENDDO 

loop 
blocking 

DO PARALLEL i1=1,n,block 
   DO j=1,m 
      DO i=i1,min(i1+block-1,n) 
         B(i,j)=A(i,j)+A(i,j-1) 
      ENDDO  
   ENDDO 
ENDDO 

Loop Blocking 

This is basically the same transformation as stripming, 
but followed by loop interchanging. 

j 

i 

j 

i 

p1 

p2 

p3 

p4 
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Loop Blocking  
continued 

DO j=1,m 
   DO i=1,n 
      B(i,j)=A(i,j)+A(i,j-1) 
   ENDDO 
ENDDO 

!$OMP PARALLEL 
DO j=1,m 
!$OMP DO 
   DO i=1,n 
      B(i,j)=A(i,j)+A(i,j-1) 
   ENDDO 
!$OMP ENDDO NOWAIT 
ENDDO 
!$OMP END PARALLEL 

j 

i 

j 

i 

p1 

p2 

p3 

p4 
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Choosing the Block Size 
The block size must be small enough so that all data references 

between the use and the reuse fit in cache. 

If the cache is shared, all processors use it simultaneously. Hence 
the effective cache size appears smaller: 

                           block < cachesize / (r1+r2+2)*d*num_proc 

Reference: Zhelong Pan, Brian Armstrong, Hansang Bae and Rudolf Eigenmann, 
On the Interaction of Tiling and Automatic Parallelization, First International 
Workshop on OpenMP (Wompat),  2005. 

DO j=1,m 
   DO k=1,block 
      … (r1 data references) 
      … = A(k,j) + A(k,j-d) 
      … (r2 data references) 
   ENDDO 
ENDDO 

Number of references made between the 
access A(k,j) and the access A(k,j-d) when 
referencing the same memory location: 
(r1+r2+3)*d*block 
 block < cachesize / (r1+r2+2)*d 
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DO i=1,n 
   A(i) = B(i) 
   DO j=1,m 
      D(i,j)=E(i,j) 
   ENDDO 
ENDDO 

DO i=1,n 
   A(i) = B(i) 
ENDDO 

DO j=1,m 
   DO i=1,n 
      D(i,j)=E(i,j) 
   ENDDO 
ENDDO 

loop 
distribution 
enables 
interchange 

Loop Distribution Enables 
Other Techniques 

In a program with multiply-nested loops, there can be a large number of 
possible program variants obtained through distribution and interchanging 
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DO i=1,n 
  A(i) = B(i) 
ENDDO 

PARALLEL DO (inter-cluster) i1=1,n,strip 
   PARALLEL DO (intra-cluster) i=i1,min(i1+strip-1,n) 
      A(i) = B(i) 
  ENDDO 
ENDDO 

strip mining 
for multi-level 
parallelism 

Multi-level Parallelism from 
Single Loops 

M 
P P P P 

M 
P P P P 

M 
P P P P 

M 
P P P P 

M cluster 
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4 Techniques for Vector 
Machines 

R. Eigenmann, Parallelizing Compilers for Multicores , Summer  2010 



Vector Instructions 

A vector instruction operates on a number of 
data elements at once. 
Example:   vadd va,vb,vc,32     
vector operation of length 32 on vector registers va,vb, and vc 
–  va,vb,vc can be  

•  Special cpu registers or memory → classical 
supercomputers 

•  Regular registers, subdivided into shorter partitions (e.g., 
64bit register split 8-way) → multi-media extensions 

–  The operations on the different vector elements 
can overlap → vector pipelining 
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Applications of Vector 
Operations 

•  Science/engineering applications are typically 
regular with large loop iteration counts. 
This was ideal for classical supercomputers, which 

had long vectors (up to 256; vector pipeline startup 
was costly). 

•  Graphics applications can exploit “multi-
media” register features and instruction sets. 
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DO i=1,n 
   A(i) = B(i)+C(i) 
ENDDO 

A(1:n)=B(1:n)+C(1:n) 

Basic Vector Transformation 

DO i=1,n 
   A(i) = B(i)+C(i) 
   C(i-1) = D(i)**2 
ENDDO 

A(1:n)=B(1:n)+C(1:n) 
C(0:n-1)=D(1:n)**2 

The triplet notation is interpreted to mean “vector operation”. Notice that this 
is not (necessarily) the same meaning as in Fortran 90,  
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DO i=1,n 
  A(i) = B(i)+C(i) 
  D(i) = A(i)+A(i-1) 
ENDDO 

DO i=1,n 
  A(i) = B(i)+C(i) 
ENDDO 

DO i=1,n 
  D(i) = A(i)+A(i-1) 
ENDDO 

A(1:n)=B(1:n)+C(1:n) 
D(1:n)=A(1:n)+A(0:n-1) 

dependence 

loop  
distribution 

vectorization 

Distribution and Vectorization  
The transformation done on the previous slide involves loop distribution. Loop 
distribution reorders computation and is thus  subject to  data dependence 
constraints. 

The transformation is not legal if there is a 
lexical-backward dependence: 

DO i=1,n 
   A(i) = B(i)+C(i) 
   C(i+1) = D(i)**2 
ENDDO 

loop-carried  
dependence Statement reordering may help 

resolve the problem. However, this is 
not possible if there is a dependence 
cycle. 
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Vectorization Needs 
Expansion 

... as opposed to privatization 

DO i=1,n 
   t      =  A(i)+B(i) 
   C(i) =  t + t**2 
ENDDO 

DO i=1,n 
   T(i)  =  A(i)+B(i) 
   C(i) =  T(i) + T(i)**2 
ENDDO 

expansion 

T(1:n) = A(1:n)+B(1:n) 
C(1:n) = T(1:n)+T(1:n)**2 

vectorization 
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DO i=1,n 
   IF (A(i) < 0) A(i)=-A(i) 
ENDDO 

WHERE (A(1:n) < 0) A(1:n)=-A(1:n) 

conditional vectorization 

Conditional Vectorization 
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DO i=1,n 
  A(i) = B(i) 
ENDDO 

DO i1=1,n,32 
  DO i=i1,min(i1+31,n) 
      A(i) = B(i) 
  ENDDO 
ENDDO 

stripmining 

Stripmining for Vectorization 

Stripmining turns a single loop into a doubly-nested loop for two-level parallelism. 
It also needs to be done by the code-generating compiler to split an operation into 
chunks of the available vector length. 
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5     Advanced Program 
Analysis 
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Interprocedural Constant 
Propagation 

Making constant values of variables 
known across subroutine calls 

Subroutine A 

   j = 150 

   call B(j) 

END 

Subroutine B(m) 

DO k=1,100 
   X(i)=X(i+m) 
ENDDO 

END 

knowing that m>100 allows this 
loop to be parallelized 
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An Algorithm for Interprocedural 
Constant Propagation 

Step 1: determine jump functions for all 
subroutine arguments 

Subroutine X(a,b,c) 
e = 10 
d = b+2 
call somesub(c) 
f = b*2 
call this sub(a,d,c,e,f) 
END 

J1 = a       (jump function of first parameter) 
J2 = b+2 
J3 = ⊥      (called bottom, meaning non-constant) 
J4 = 10 
J5 = ⊥ 

•  Mechanism for finding jump functions: (local) forward substitution and  
  interprocedural MAYMOD analysis. 
•  Here we assume jump functions are of the form P+const  (P is a  
  subroutine parameter of the callee). 
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Constant Propagation Algorithm 
continued 

Step 2:  
•  initialize all formal parameters to the 

value T (called top, meaning non-yet-known) 
•  for all jump functions: 

–  if it is ⊥: set formal parameter value to ⊥ 
–  if it is constant and the value of the formal 

parameter is the same constant or T : set it 
to this constant 
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Constant Propagation Algorithm 
continued 

Step 3: 
1. put all formal parameters on a work queue 
2. take a parameter from the queue: 

for all jump functions that contain this parameter: 
•  determine the value of the target parameter of this jump function. 

Set it to this value, or to ⊥ if it is different from a previously set 
value. 

•  if the value of the target parameter changes, put this parameter 
on the queue 

3. repeat 2 until the queue is empty 
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Interprocedural Data-
Dependence Analysis 

•  Motivational examples: 

DO i=1,n 
  call clear(a,i) 
ENDDO 

Subroutine clear(x,j) 
   x(j) = 0 
END 

DO i=1,n 
  a(i) = b(i) 
  call dupl(a,i) 
ENDDO 

Subroutine dupl(x,j) 
   x(j) = 2*x(j) 
END 

DO i=1,n 
  a(i) = b(i) 
  call smooth(a,i) 
ENDDO 

Subroutine smooth(x,j) 
   x(j) = (x(j-1)+x(j)+x(j+1))/3 
END 
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Interproc. DD-analysis 

•  Overall strategy: 
– subroutine inlining 
– move loop into called subroutine 
– collect array access information in callee 

and use in the analysis of the caller 
→ will be discussed in more detail 
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Interproc. DD-analysis 
•  Representing array access information 

–  summary information 
•  [low:high] or [low:high:stride] 
•  sets of the above 

–  exact representation 
•  essentially all loop bound and subscript information is 

captured 

–  representation of multiple subscripts 
•  separate representation 
•  linearized 
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Interproc. DD-analysis 

•  Reshaping arrays 
– simple conversion 

•  matching subarray or  2-D→1-D 
– exact reshaping with div and mod 
–  linearizing both arrays 
– equivalencing the two shapes  

•  can be used in subroutine inlining 
Important: reshaping may lose the implicit 

assertion that array bounds are not violated! 
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Symbolic Analysis 

•  Expression manipulation techniques 
–  Expression simplification/normalization   
–  Expression comparison 
–  Symbolic arithmetic 

•  Range analysis 
–  Find lower/upper bounds of variable values at a 

given statement 
•  For each statement and variable, or 
•  Demand-driven, for a given statement and variable 
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6   Techniques Specific to 
Distributed-memory 

Machines 
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Execution Scheme on a 
Distributed-Memory Machine 

M 
P 

M 
P 

M 
P 

M 
P 

Typical execution scheme: 
•  All nodes execute the same program 
•  Program uses node_id to select the 
subcomputation to execute on each 
participating processor and the data to access. 
For example,  

mystrip=⎡n/max_nodes⎤ 
lb = node_id*mystrip +1 
ub = min(lb+mystrip-1,n) 
DO i=lb,ub 
   . . . 
ENDDO 

DO i=1,n 

. . . 

ENDDO 

This is called Single-Program-Multiple-Data (SPMD) execution 
scheme 

how to place  
and access 
data ? 

how/when to  
synchronize ? 
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Data Placement 

Single owner: 
•  Data is distributed onto the participating 

processors’ memories 

Replication: 
•  Multiple versions of the data are placed 

on some or all nodes. 

R. Eigenmann, Parallelizing Compilers for Multicores , Summer  2010 



numbers indicate the node of a 4-processor 
distributed-memory machine on which the 
array section is placed 

1 2 3 4 block 
distribution 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4    cyclic 
distribution 

1 2 3 4           block-cyclic 
distribution 

1 

IND(1) IND(2) IND(3) IND(4)           indexed 
distribution 

IND(5) 

        index array 

Data Distribution Schemes 

Automatic data distribution is difficult because it is a 
global optimization.  
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DO i=1,n 
   B(i) = A(i)+A(i-1) 
ENDDO 

send (A(ub),my_proc+1) 
receive (A(lb-1),my_proc-1)  
DO i=lb,ub 
   B(i) = A(i)+A(i-1) 
ENDDO 

message 
generation 

•  lb,ub determine the iterations assigned to each processor. 
•  array distributions assumed to match the iteration distribution 
•  my_proc is the current processor number 

Message Generation 
for single-owner placement 

Compilers for languages such as HPF (High-Performance 
Fortran) have explored these ideas extensively 

EXAMPLE 
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Owner-computes Scheme 

DO i=1,n 
 A(i)=B(i)+B(i-m) 
 C(ind(i))=D(ind2(i)) 
ENDDO 

DO i=1,n 
    send/receive what’s necessary 
    IF I_own(A(i)) THEN 
        A(i) = B(i)+B(i-m) 
    ENDIF 
    send/receive what’s necessary 
    IF I_own(C(ind(i)) THEN 
        C(ind(i))=D(ind2(i)) 
    ENDIF 
ENDDO 

•  nodes execute those iterations and statements whose LHS they own 
•  first they receive needed RHS elements from remote nodes 
•  nodes need to send all elements needed by other nodes 
Example shows basic idea only. Compiler optimizations needed!  

In general, the elements accessed by a processor are different from the elements 
owned by this processor as defined by the data distribution 
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Compiler Optimizations 
for the raw owner computes scheme    

•  Eliminate conditional execution 
–  combine if statements with same condition 
–  reduce iteration space if possible 

•  Aggregate communication 
–  combine small messages into larger ones 
–  tradeoff: delaying a message enables message 

aggregation but increases the message latency. 
•  Message Prefetch 

–  moving send operations earlier in order to reduce 
message latencies. 

there is a large number of research papers describing such techniques 
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Message Generation 
for replication 

Broadcast written data 

Fully parallel section  
w. local reads and writes 

Fully parallel section  
w. local reads and writes 

time 

Optimization: reduce broadcast 
operations to necessary point-to-point 
communication 

Advantages: 
• Fully parallel sections with local reads and writes 
• Easier message set computation (no partitioning per processor needed) 

Disadvantages: 
• Not data-scalable 
• More write operations necessary (but, collective communication can be used)  
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7     Techniques for  
Instruction-Level 

Parallelization 
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Implicit vs. Explicit ILP 

Implicit ILP: ISA is the same as for sequential 
programs.  
–  most processors today employ a certain degree of 

implicit ILP 
–  parallelism detection is entirely done by the hardware, 

however, 
–  compiler can assist ILP by arranging the code so that 

the detection gets easier. 
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Implicit vs. Explicit ILP 
Explicit ILP: ISA expresses parallelism.  

–  parallelism is detected by the compiler 
–  parallelism is expressed in the form of 

•  VLIW (very long instruction words): packing several instructions 
into one long word 

•  EPIC (Explicitly Parallel Instruction Computing): bundles of (up 
to three) instructions are issued. Dependence bits can be 
specified.  

   Used in Intel/HP IA-64 architecture. The processor also 
supports predication, early (speculative) loads, prepare-to-
branch, rotating registers. 
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trace scheduling 

Trace Scheduling 
(invented for VLIW processors, still a useful terminology) 

Two big issues must be solved by 
all approaches: 
1. Identifying the instruction sequence 

that will be inspected for ILP. 
    Main obstacle: branches 
2. reordering instructions so that 

machine resources are exploited 
efficiently. 

trace selection 

trace compaction 
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Trace Selection 
•  It is important to have a large instruction window (block) within 

which the compiler can find parallelism.  
•  Branches are the problem. Instruction pipelines have to be 

flushed/squashed at branches 
•  Possible remedies: 

–  eliminate branches 
–  code motion can increase block size 
–  block can contain out-branches with low probability 
–  predicated execution 
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Branch Elimination 

•  Example: 

    comp R0 R1 
    bne  L1: 
    bra  L2: 
L1: . . . 
    . . . 

L2: . . . 

    comp R0 R1 
    beq  L2: 

L1: . . . 
    . . . 

L2: . . . 
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Code Motion 

I1 I1 

I1 

c1 

I1 
c2 

I2 I3 

c2 

c1 
I1 I3 

c1 

I1 I2 

Code motion can increase window sizes and eliminate subtrees  
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IF (a>0) THEN 
   b=a 
ELSE 
   b=-a 
ENDIF 

p = a>0 
p: b=a 
p: b=-a 

; assignment of predicate 
; executed if predicate true 
; executed if predicate false 

Predicated Execution 

Predication 
•  increases the window size for analyzing and exploiting parallelism 
•  increases the number of instructions “executed” 
These are opposite demands! 

Compare this technique to conditional vectorization  
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ind = i0 
. . . 
ind = ind+1 
. . . 
ind = ind+1 

dependence 

dependence 

ind = i0 
. . . 
ind = i0+1 
. . . 
ind = i0+2 

sum = sum+expr1 
. . . 
sum = sum+expr2 
. . . 
sum = sum+expr3 
. . . 
sum = sum+expr4 

dependence 

dependence 

s1=expr1 
. . . 
s1=s1+expr2 
. . . 
s2=expr3 
. . . 
s2=s2+expr4 
. . . 
sum=sum+s1+s2 

dependence 

shaded blocks of statements are independent of each other and can 
be executed as parallel instructions 

Dependence-removing ILP 
Techniques 
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Speculative ILP 
Speculation is performed by the architecture in various forms 

–  Superscalar processors: compiler only has to deal with the 
performance model. ISA is the same as for non-speculative 
processors 

–  Multiscalar processors: (research only) compiler defines tasks that 
the hardware can try execute speculatively in parallel. Other than 
task boundaries, the ISA is the same.  

    References: 
•  Task Selection for a Multiscalar Processor, T. N. Vijaykumar and 

Gurindar S. Sohi, The 31st International Symposium on 
Microarchitecture (MICRO-31), pp. 81-92, December 1998.  

•  Reference Idempotency Analysis: A Framework for Optimizing 
Speculative Execution, Seon-Wook Kim, Chong-Liang Ooi, Rudolf 
Eigenmann, Babak Falsafi, and T.N. Vijaykumar,, In Proc. of 
PPOPP'01, Symposium on Principles and Practice of Parallel 
Programming, 2001.  
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Compiler Model of Explicit 
Specluative Parallel Execution 

(Multicalar Processor) 
•  Overall Execution:  speculative 

threads choose and start the 
execution of any predicted next 
thread. 

•  Data Dependence and Control 
Flow Violations lead to roll-backs. 

•  Final Execution: satisfies all cross-
segment flow and control 
dependences.  

•  Data Access: Writes go to thread-
private speculative storage. Reads 
read from ancestor thread or 
memory. 

•  Dependence Tracking: Data 
Flow and Control Flow 
dependences are detected 
directly. Lead to roll-back. Anti 
and Output dependences are 
satisfied via speculative 
storage. 

•  Segment Commit: Correctly 
executed threads (I.e., their final 
execution) commit their 
speculative storage to the 
memory, in sequential order. 
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8   OpenMP  for  

Distributed Parallel Systems 
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Is OpenMP a Useful 
Programming Model for 
Distributed Processors? 

•  OpenMP is a parallel programming model that assumes a shared 
address space 

    #pragma OMP parallel for 
    for (i=1; 1<n; i++) {a[i] = b[i];} 

•  Why is it difficult to implement OpenMP for distributed processors? 
The compiler or runtime system will need to 
–  partition and place data onto the distributed memories 
–  send/receive messages to orchestrate remote data accesses 
HPF (High Performance Fortran) was a large-scale effort to do so - without 

success 
•  So, why should we try again ? 

OpenMP is an easier programming (higher-productivity?) programming model. 
OpenMP 

–  allows programs to be parallelized incrementally, starting from the serial 
versions, 

–  relieves the programmer of the task of managing the movement of logically 
shared data. 
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Baseline Translation of 
OpenMP to MPI Compiler 

•  Execution Model  
–  SPMD model 

•  Serial Regions are replicated on all processes 
•  Iterations of parallel for loops are distributed (using 

static block scheduling) 
–  Shared Data is allocated on all nodes 

•  There is no concept of “owner” (contrast to HPF) 
 There are only producers and consumers of shared data 

•  At the end of a parallel loop, producers communicate 
shared data to potential future consumers 

•  The compiler uses array section analysis for 
summarizing array accesses  
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Baseline Translation 

Translation Steps: 
1.  Identify all shared data 
2.  Create annotations for accesses to shared data 

(use regular section descriptors to summarize 
array accesses) 

3.  Use interprocedural data flow analysis to identify 
potential consumers; incorporate OpenMP 
relaxed consistency specifications 

4.  Create message sets to communicate data 
between producers and consumers 
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Message Set Generation 
< write  A [l1(p) : u1(p)] > 

 <read a [l2(p) : u2(p)] > <write A [l3(p) : u3(p)]> 

<read A[l4(p) : u4(p)]> 

… 

… 

… 

Message Set at RSD vertex V1, for 
array A from process p to process q 
computed as 

SApq = Elements of A with subscripts in 
the set 

{[l1(p),u1(p)]∩[l2(q),u2(q)]} U 
{[l1(p),u1(p)]∩[l4(q),u4(q)]} 

V1: 

<read A [5(p) : u5(p)]> 

U ([l1(p),u1(p)]∩{[l5(q),u5(q)]-[l3(p),u3
(p)]}) 

Processor p writes array 
section A from l1(p) to u1(p) 
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mydo = 1 ; 

#pragma omp parallel 

{ 

/* Loop L1 */ 

#pragma omp for nowait  

    for(j=1;j<N;j++) { 

#pragma omp flush(myflag) 

          …myflag.. ; 

     A[j] = … 

    } 

/* Loop L2 */ 

#pragma omp for nowait 

     for(j=1;j<M;j++) { 

          … = A[i]...  

     } 

  myflag++ ; 

} 

myflag = 1 

myflag++ 

/* Loop Body for Loop L1 */ 

    …myflag.. 

     …. 

/* loop exit for Loop L1 */ 

/*loop_entry for Loop L1*/ 

<A, lb(1,N,p), ub(1,N,p), write> /* loop_entry for Loop L2 */ 

<A, lb(1,M,p), ub(1,M,p), read> 

/* loop exit for Loop L2 */ 

/*Start_parallel*/ 

/*End_parallel*/ 

e1 

v1 
v2 

/* Loop Body for Loop L2 */ 

     …. 

e3 

e2 

e4 

Incorporating OpenMP Relaxed 
Memory Consistency Specifications 

R. Eigenmann, Parallelizing Compilers for Multicores , Summer  2010 



Translation of Irregular 
Accesses 

•  Irregular Access – A[B[i]], A[f(i)] where B[i] is a 
subscript array or f(i) is a non-affine function of the 
loop index. 
–  Reads: assumed the whole array accessed 
–  Writes: inspect at runtime, communicate at the end of 

parallel loop 
•  A key property is Monotonicity :  i > j → B[i] > B[j] 

Monotonicity is useful because it provides bounds on the 
irregular subscript in terms of the loop bounds  

•  For lb<i<ub, B[lb] < B[i] < B[ub]  
Monotonicity  allows the compiler to  

•  tighten array sections 
•  avoid runtime inspection of writtten array sections that do not 

overlap 
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Optimizations based on 
Collective Communication 

•  Recognition of Reduction Idioms 
–  Recognize program patterns that implement array reductions 

– usually:  combination of parallel loop and critical section. 
–  Translate them to  MPI_Reduce / MPI_Allreduce functions. 

•  Casting sends/receives in terms of alltoall calls 
–  In general, communication between producers and 

consumers are done using non-blocking send/recv and 
MPI_Wait  

–  There may be insufficient distance between the production 
and consumption points in the program to allow overlap of 
computation and communication 

–  When the producer-consumer relationship is many-to-many 
and there is insufficient distance between producers and 
consumers, cast the sends/recvs into a single MPI_Alltoallv 
call 
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Performance Evaluation 
of Baseline Translation 

Platform I – Cluster of  sixteen PIII 800 MHz Linux nodes, with 256 MB memory per 
node, connected by a commodity 100 Mbps Ethernet network. 

From SPEC OMP2001 From NAS Par. Benchmarks 

Our OpenMP to MPI 
translator 

Hand-coded 
MPI 
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Performance on IBM-SP2 
Platform II – Sixteen IBM SP-2 WinterHawk-II nodes connected by a high-performance switch. 
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Comparison with SDSM on 
Linux Cluster 
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Performance Comparison with 
HPF on Linux Cluster 
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We can do more for 
Irregular Applications 

L1 : #pragma omp parallel for 
    for(i=0;i<10;i++) 
  A[i] = ... 

L2 : #pragma omp parallel for 
   for(j=0;j<20;j++) 
  B[j] = A[C[j]] + ... 

•  Subscripts of accesses to shared 
arrays not always analyzable at 
compile-time 

•  Baseline OpenMP to MPI 
translation: 

–  Conservatively estimate that each 
process accesses the entire array 

–  Try to deduce properties such as 
monotonicity for the irregular 
subscript to refine the estimate 

•  Still, there may be redundant 
communication 

–  Runtime tests (inspection) are 
needed to resolve accesses 

Array 
A 

produced by 
process 2 

produced by 
process 1 

1, 3, 5, 0, 2   …..  2, 4, 8, 1, 2 ... Array 
C 

accesses on 
process 1 

accesses on 
process 2 R. Eigenmann, Parallelizing Compilers for Multicores , Summer  2010 



Inspection 
•  Inspection allows accesses to be differentiated (at runtime) as 

local and non-local accesses. 
•  Inspection can also map iterations to accesses. This mapping 

can then be used to re-order iterations: 
–  first, iterations that access local data 
–  then, iterations that access remote data 
=> Communication of remote data can be overlapped with the 

computation of iterations that access local data 

Array 
A 

1, 3, 5, 0, 2   …..  2, 5, 8, 1, 2 ... C[i] 

accesses on 
process 1 

accesses on 
process 2 

 0,   1,   2,   3,   4, ……..     10, 11, 12, 13, 14 ... Index  i 

0, 1, 2, 3, 5 ….. . 5, 8, 1, 2, 2, ... 
      3,   0,   4,   1,   2, ……..     11, 12, 13, 10, 14 ... 

accesses on 
process 1 

accesses on 
process 2 

reorder 
iterations 
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Loop Restructuring 
•  Simple iteration reordering may 

not be sufficient to expose the 
full set of possibilities for 
computation-communication 
overlap. 

L1 : #pragma omp parallel for 
  for(i=0;i<N;i++) 
  p[i] = x[i] + alpha*r[i] ; 

L2 : #pragma omp parallel for 
  for(j=0;j<N;j++) { 
  w[j] = 0 ; 
  for(k=rowstr[j];k<rowstr[j+1];k++) 

S2:     w[j] = w[j] + a[k]*p[col[k]] ; 
        } 

Reordering loop L2 may still not club 
together accesses from different sources 

L1 : #pragma omp parallel for 
      for(i=0;i<N;i++) 
          p[i] = x[i] + alpha*r[i] ; 

L2-1 : #pragma omp parallel for 
         for(j=0;j<N;j++) { 
                 w[j] = 0 ; 
          } 

L2-2: #pragma omp parallel for 
         for(j=0;j<N;j++) { 
         for(k=rowstr[j];k<rowstr[j+1];k++) 
              S2: w[j] = w[j] + a[k]*p[col[k]] ; 
         } 

Distribute loop 
L2 to form loops 
L2-1 and L2-2 
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Loop Restructuring continued  

L1 : #pragma omp parallel for 
      for(i=0;i<N;i++) 
          p[i] = x[i] + alpha*r[i] ; 

L2-1 : #pragma omp parallel for 
         for(j=0;j<N;j++) { 
                 w[j] = 0 ; 
          } 

L2-2: #pragma omp parallel for 
         for(j=0;j<N;j++) { 
         for(k=rowstr[j];k<rowstr[j+1];k++) 
              S2: w[j] = w[j] + a[k]*p[col[k]] ; 
         } 

L1 : #pragma omp parallel for 
      for(i=0;i<N;i++) 
          p[i] = x[i] + alpha*r[i] ; 

L2-1 : #pragma omp parallel for 
         for(j=0;j<N;j++) { 
                 w[j] = 0 ; 
          } 

L3: for(i=0;i<num_iter;i++) 
 w[T[i].j] = w[T[i].j] + 
    a[T[i].k]*p[T[i].col] ; 

Coalesce nested 
loop L2-2 to form 
loop L3 

Reorder iterations of  
loop L3 to achieve 
computation-
communication overlap 

Final restructured and reordered loop The T[i] data structure is created and 
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Achieving Actual Computation-
Communication Overlap 

•  Non-blocking send/recv calls may not actually 
progress concurrently with computation. 
–  Use a multi-threaded runtime system with separate 

computation and communication threads – on dual CPU 
machines these threads can progress concurrently. 

•  The compiler extracts the send/recvs along with the 
packing/unpacking of message buffers into a 
communication thread. 
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Initiate sends to process q,r 

Execute iterations that 
access local data 

Wait for receives from process q 
to complete 

Execute iterations that access data 
received from process q 

Pack data and send to processes 
q and r. 

Receive data from process q 

Wait for receives from process r to 
complete 

Computation Thread on 
Process p 

Communication Thread 
on Process p 

Receive data from process r 

Execute iterations that access data 
received from process r 

Program 
Timeline 

tsend 

trecv-q 

trecv-r 

tcomp-p 
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Wake up communication thread 
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Summary  
OpenMP for Distributed Systems 

•  There is hope for easier programming models on distributed processing 
systems (DPS) 

•  OpenMP can be translated effectively onto DPS; we have used 
benchmarks from 

–  SPEC OMP 
–  NAS 
–  additional irregular codes 

•  Caveats: 
–  black-belt programmers will always be able to do better 
–  advanced compiler technology is involved. There will be performance 

surprises 
–  Larger set of and full compiler implementation are needed 
     => this is ongoing work 
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9. Autotuning:  
Moving Compile-time 

Decisions Into Runtime 
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Why Autotuning ? 
my bias 

Ultimate goal: Dynamic Optimization Support For Compilers and More 
•  Runtime decisions for compilers are necessary because compile-time 

decisions are too conservative 
–  Insufficient information about program input, architecture 
–  When to apply what transformation in which flavor? 
–  Polaris compiler has some 200 switches 

Example of an important switch: parallelism threshold 
–  Early runtime decisions:  

•  Multi-version loops, runtime data-dependence test, 1980s  
•  My goals: 

–  Looking for tuning parameters and evidence of performance difference 
–  Go beyond the “usual”:  unrolling, blocking, reordering 
–  Show performance on real programs 
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Is there Potential ? 
You bet! 
•  Imagine you (the compiler) had full knowledge of 

input data and execution platform of the program 

0 100% knowledge 
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er
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rm

an
ce
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10 

100 
“Amdahl’s law 
of dynamic 
optimization” You are here 
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Early Results on Fully-
Dynamic Adaptation 

•  ADAPT system (Michael Voss - 2000) 
•  Features: 

–  Triage  
•  tune the most deserving program sections first 

–  Used remote compilation 
•  Allowed standard compilers and all options to be used  

–  AL - adapt language 

•  Issues: 
–  Scalability to large number of optimizations 
–  Shelter and re-tune 
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More Recent Work 
Offline Tuning - “Profile-time” tuning 

Zhelong Pan 
Challenges: 
1.  Explore the optimization space 

Empirical optimization algorithm - CGO 2006 

2.  Comparing performance  
  Fair Rating methods - SC 2004 

•  Comparing two (differently optimized) subroutine invocations 

3.  Choosing procedures as tuning candidates 
Tuning section selection - PACT 2006 

•  Program partitioning into tuning sections 
Two goals : increase program performance and reduce 

tuning time 
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Search 
Algorithm 

Version 
Generation 

Performance Evaluation 
(Program Execution) 

Start 

Final 
Version 

Whole-Program Tuning 

Search Algorithms 
•  BE: batch elimination 

–  Eliminates “bad” optimizations in a batch => fast 
–  Does not consider interaction => not effective 

•  IE:  iterative elimination 
–  Eliminates one “bad” optimization at a time => slow  
–  Considers interaction => effective 

•  CE: combined elimination (final algorithm) 
–  Eliminates a few “bad” optimizations at a time 

•  Other algorithms 
–  optimization space exploration, statistical selection, 

genetic algorithm, random search 
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Performance Improvement 
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Tuning at the Procedure Level 
   Tuning Section Selection (TSS) 

   Rating Method Analysis (RMA) 

   Code Instrumentation (CI) 

   Driver Generation (DG) 

   Performance Tuning (PT) 

   Final Version Generation (FVG) 

Pre-Tuning 

Post-Tuning 

During Tuning 

(1) 

(6) 

(5) 

(4) 

(3) 

(2) 
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Reduction of Tuning Time 
through Procedure-level 

Tuning 

62.22
50.99

105.76

69.23
63.14

89.28

50.59

87.32

36.96

102.97

68.28

2.33 7.06 11.21
4.03 1.79 2.33 3.38 4.22 2.59 1.61 3.36

0.00

20.00

40.00

60.00

80.00

100.00

120.00

am
m
p

ap
pl
u

ap
si ar
t

eq
ua
ke

m
es
a

m
gr
id

si
xt
ra
ck

sw
im

w
up
w
is
e

G
eo
M
ea
n

N
or

m
al

iz
ed

 tu
ni

ng
 ti

m
e

Whole PEAK

R. Eigenmann, Parallelizing Compilers for Multicores , Summer  2010 



Tuning Time Components 
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Ongoing Work 

Beyond autotuning of compiler options 
•  New applications of the tuning system 

– MPI parameter tuning 
– Tuning library selection - (ScalaPack, ...) 
– OpenMP to MPI translator 
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TCP Buffer Size Effect on 
NPB 

TCP Buffer Size Effect
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Alltoall collective call 
performance 

alltoall performance
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Segmentation Effect on Basic 
Linear Alltoall Algorithm 

alltoll performance (basic linear algorithm)
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Automatic Tuning for Multicore 

•  Starting point was the Polaris compiler  
–  200 switches 

•  Early results on dynamic serialization 
•  Goal: parallelizing compiler that never lowers 

the performance of a program 
•  OpenMP to MPI translation 
•  Tuning NICA architectures 

–  Multicore + niche capabilities (accelerators and 
more) 
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Conclusions and Discussion 

Dynamic Adaptation is one of the most exciting research topics 

There are still issues to Sink your Teeth in 
•  Runtime overhead: when to shelter/re-tune  
•  Fine-grain tuning 
•  Model-guided pruning of search space 
•  Architecture of an autotuner 

–  If we could agree, we could plug-in our modules 

•  AutoAuto - autotuning autoparallelizer 
•  How to get order(s) of magnitude improvement 

–  Wanted: tuning parameters and their performance effects 
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Tuning Speculative Secction 
Selection 

Benchmark Single Thread[Vijay Micro 98][Johnson PLDI 04]    [Johnson PPoPP 07]  
   IPC   Min-Cut   Greedy Hierarchical  

bzip2   0.70  1.01  1.09   1.07  1.17  
gzip   0.72  1.27  1.35   1.11  1.17  
mcf   0.07  1.01  1.63   1.07  1.09  
parser   0.51  0.87  1.24   1.20  1.18  
vpr    0.63  1.38  1.09   1.38  1.38  
geometric mean   1.09  1.27   1.16  1.19 "

Speedup factors 
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