
Parallelizing Compilers for
Multicores

Course Offered at the Universitat Politècnica de Catalunya
Rudi (Rudolf) Eigenmann

Purdue University
School of Electrical and Computer Engineering

Computing Research Institute
Summer 2010

www.ece.purdue.edu/~eigenman/app/

How to get to Purdue University

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Course Schedule
Parallelizing Compilers for Multicore

During the period 7th June– 18th June

June 7th - 11th, 10:00 - 13:00 C6-E101
June 14th - 18th, 10:00 - 13:00 C6-E101

Grading will be based on several in-class exercises and class interaction

Office hours: by appointment eigenman@purdue.edu

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Course Content

•  Introduction and motivation
•  Detecting parallelism
•  Mapping parallelism to the machine

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Optimizing Compilers are the
Center of the Universe

Today Tomorrow

Fortran
C, Java

Workstation
Multicores

NOW

Problem
Specification

Language

Globally
Distributed/Parallel

Resources

Translate increasingly advanced human interfaces
onto increasingly sophisticated target machines

Tr
an

sl
at

or

 G
ra

nd

C
ha

lle
ng

e

Optimizing compilers are of particular importance where performance matters
most. Hence our focus on High-Performance Computing.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Issues in Optimizing /
Parallelizing Compilers

The Goal:
•  We would like to run standard (C, Java,

Fortran) programs on parallel computers
leads to the following high-level issues:
•  How to detect parallelism?
•  How to map parallelism onto the machine?
•  How to create a good compiler architecture?

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Detecting Parallelism

•  Program analysis techniques
•  Data dependence analysis
•  Dependence removing techniques
•  Parallelization in the presence of

dependences
•  Runtime dependence detection

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Mapping Parallelism onto the
Machine

•  Exploiting parallelism at many levels
–  Multiprocessors and multi-cores (our focus)
–  Distributed memory machines (clusters or global

networks)
–  Heterogeneous architectures
–  Instruction-level parallelism
–  Vector machines

•  Locality enhancement

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Parallelizing Compiler Books and
Survey Papers

Books:
•  Ken Kennedy, John Allen: Optimizing Compilers for Modern Architectures: A

Dependence-based Approach (2001)
•  Michael Wolfe: High-Performance Compilers for Parallel Computing (1996)
•  Utpal Banerjee: several books on Data Dependence Analysis and

Transformations

Survey Papers:
•  Utpal Banerjee, Rudolf Eigenmann, Alexandru Nicolau, and David Padua.

Automatic Program Parallelization. Proceedings of the IEEE, 81(2), February
1993.

•  David F. Bacon, Susan L. Graham, Compiler transformations for high-
performance computing, ACM Computing Surveys (CSUR), Volume 26, Issue
4, December 1994, Pages: 345 - 420,1994

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Course Approach
There are many schools on optimizing compilers.

Our approach is performance-driven
Initial course schedule:

–  Blume study - the simple techniques
–  The Cedar Fortran Experiments
–  Analysis and Transformation techniques in the

Cetus compiler
–  Additional transformations (for GPGPUs and other

architectures)

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

The Heart of Automatic
Parallelization

Data Dependence Testing

If a loop does not have data dependences
between any two iterations then it can be
safely executed in parallel

In science/engineering applications, loop
parallelism is most important. In non-
numerical programs other control structures
are also important

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Data Dependence Tests:
Motivating Examples

Statement Reordering
can these two statements be
swapped?

DO i=1,100,2
 B(2*i) = ...
 ... = B(3*i)
ENDDO

A data dependence exists between two data references iff:
•  both references access the same storage location
•  at least one of them is a write access

DD testing is important not just for
detecting parallelism

Loop Parallelization
Can the iterations of this
loop be run concurrently?

DO i=1,100,2
 B(2*i) = ...
 ... = B(2*i) +B(3*i)
ENDDO

DD testing to detect parallelism

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

This course would now be finished if:

•  the mathematical formulation of the data
dependence problem had an accurate and
fast solution, and

•  there were enough loops in programs without
any data dependences, and

•  dependence-free code could be executed by
today’s multicores directly and efficiently.

There are enough hard problems to fill several
courses!

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Part I:
Performance of Basic
Automatic Program

Parallelization

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

15 Years of Parallelizing
Compilers

A Performance study at the beginning of
the 90es (Blume study)
Analyzed the performance of state-of-the-art

parallelizers and vectorizers using the
Perfect Benchmarks.

William Blume and Rudolf Eigenmann, Performance Analysis of
Parallelizing Compilers on the Perfect Benchmarks Programs,
IEEE Transactions on Parallel and Distributed Systems, 3(6),
November 1992, pages 643--656.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Overall Performance

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Performance of Individual Techniques

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Transformations measured in
the “Blume Study”

•  Scalar expansion
•  Reduction parallelization
•  Induction variable substitution
•  Loop interchange
•  Forward Substitution
•  Stripmining
•  Loop synchronization
•  Recurrence substitution

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Scalar Expansion
DO j=1,n
 t = a(j)+b(j)
 c(j) = t + t2

ENDDO

DO PARALLEL j=1,n
PRIVATE t
 t = a(j)+b(j)
 c(j) = t + t2

ENDDO

DO PARALLEL j=1,n
 t0(j) = a(j)+b(j)
 c(j) = t0(j) + t0(j)2

ENDDO

Privatization

Expansion
We assume a shared-memory model:

•  by default, data is shared, i.e., all
processors can see and modify it
•  processor share the work of
parallel loops

flow

anti

output

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Parallel Loop Syntax and
Semantics

!$OMP PARALLEL PRIVATE(<private data>)
 <preamble code>
!$OMP DO
DO i = ilow, iup

 <loop body code>

ENDDO
!$OMP END DO
 <postamble code>
!$OMP END PARALLEL

OpenMP:

executed by all participating processors (threads) exactly once

work (iterations) shared by participating processors (threads)

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Reduction Parallelization

DO j=1,n
 sum = sum + a(j)

ENDDO

!$OMP PARALLEL, PRIVATE (s)
s = 0
!$OMP DO
DO j=1,n
 s = s + a(j)
ENDDO
!$OMP ENDDO
!$OMP ATOMIC
 sum=sum+s
!$ OMP END PARALLEL !$OMP PARALLEL DO

!$OMP+REDUCTION(+:sum)
DO j=1,n
 sum = sum + a(j)

ENDDO

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Induction Variable Substitution
ind = ind0
DO j = 1,n
 a(ind) = b(j)
 ind = ind+k
ENDDO

ind = ind0
DO PARALLEL j = 1,n
 a(ind0+k*(j-1)) = b(j)
ENDDO

Note, this is the reverse of strength reduction, an important
transformation in classical (code generating) compilers.

real d(20,100)
DO j=1,n
 d(1,j)=0
ENDDO

loop:
 ...
R0 ← &d+20*j
(R0) ← 0
...
jump loop

R0 ← &d
loop:
 ...
(R0) ← 0
...
R0 ← R0+20
jump loop

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Forward Substitution
m = n+1
…
DO j=1,n
 a(j) = a(j+m)

ENDDO

m = n+1
…
DO j=1,n
 a(j) = a(j+n+1)

ENDDO

a = x*y
b = a+2
c = b + 4

a = x*y
b = x*y+2
c = x*y + 6

dependences no dependences

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Stripmining

DO j=1,n
 a(j) = b(j)

ENDDO

DO i=1,n,strip
 DO j=i,min(i+strip-1,n)
 a(j) = b(j)
 ENDDO

ENDDO

There are many variants of stripmining
(sometimes called loop blocking)

1 n

strip

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Loop Synchronization

DO j=1,n
 a(j) = b(j)
 c(j) = a(j)+a(j-1)

ENDDO

DOACROSS j=1,n
 a(j) = b(j)
 post(current_iteration)
 wait(current_iteration-1)
 c(j) = a(j)+a(j-1)

ENDDO

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Basic idea of the recurrence solver:

Recurrence Substitution
DO j=1,n
 a(j) = c0+c1*a(j)+c2*a(j-1)+c3*a(j-2)

ENDDO

call rec_solver(a(1),n,c0,c1,c2,c3)

DO j=1,40
 a(j) = a(j) + a(j-1)
ENDDO

DO j=1,10
 a(j) = a(j) + a(j-1)
ENDDO

DO j=11,20
 a(j) = a(j) + a(j-1)
ENDDO

DO j=21,30
 a(j) = a(j) + a(j-1)
ENDDO

DO j=31,40
 a(j) = a(j) + a(j-1)
ENDDO

Error: 0 ∆a(10) ∆a(10)+∆a(20) ∆a(10)+∆a(20)+∆a
(30)

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

DO j= 1,m
 DO i=1,n
 a(i,j) =a(i,j)+a(i,j-1)

 ENDDO
ENDDO

Loop Interchanging

DO i= 1,n
 DO j=1,m
 a(i,j) = a(i,j)+a(i,j-1)
 ENDDO
ENDDO

•  stride-1 references increase cache locality
–  read: increase spatial locality
–  write: avoid false sharing

•  scheduling of outer loop is important (consider original loop nest):
–  cyclic: no locality w.r.t. to i loop
–  block schedule: there may be some locality
–  dynamic scheduling: chunk scheduling desirable

•  impact of cache organization ?
•  parallelism at outer position reduces loop fork/join overhead

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Effect of Loop Interchanging
Example: speedups of the most time-consuming loops

in the ARC2D benchmark on 4-core machine

0

2

4

6

8

10

STEPFX
DO230

STEPFX
DO210

 XPENTA
DO11

FILERX
DO39

Speedup

loop interchange applied in the
process of parallelization

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Execution Scheme for Parallel Loops
1. Architecture supports parallel loops. Example: Alliant

FX/8 (1980es)
–  machine instruction for parallel loop
–  HW concurrency bus supports loop scheduling

a=0
DO i=1,n
 b(i) = 2
ENDDO
b=3

store #0,<a>
load <n>,D6
sub 1,D6
load &b,A1
cdoall D6
 store #2,A1(D7.r)
endcdoall
store #3,

D7 is reserved
for the loop
variable.
Starts at 0.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Execution Scheme for Parallel Loops

2. Microtasking scheme (dates back to early
IBM mainframes)

p1 p2 p3 p4
sequential

sequential

sequential

parallel

parallel

problem:
loop startup
must be very fast

init_helper_tasks

wakeup_helpers

wakeup_helpers
sleep_helpers

sleep_helpers

microtask startup: 1 µs
pthreads startup: up to 100 µs

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Compiler Transformation for the
Microtasking Scheme

a=0
DO i=1,n
 b(i) = 2
ENDDO
b=3

call init_microtasking() // once at program start
...
a=0
call loop_scheduler(loopsub,i,1,n,b)
b=3

subroutine loopsub(mytask,lb,ub,b)
DO i=lb,ub
 b(i) = 2
ENDDO
END

Master task
 loop_scheduler:
 partition loop iterations
 wakeup
 call loopsub(...)
 barrier (all flags reset)
 return

Helper task
 loop:
 wait for flag
 call loopsub(id,lb,ub,param)
 reset flag

Helper 1:
loopsub
 lb,ub
param

flag

shared data

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Performance of
Parallelization Techniques

Rudolf Eigenmann, Jay Hoeflinger, and David Padua, On the
AutomaticParallelization of the Perfect Benchmarks. IEEE Transactions
on Parallel and Distributed Systems, volume 9, number 1, January 1997,
pages 5-23.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Compiler Evaluation (1990)

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Compiler Evaluation (1990)

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Improving Compiler-
Parallelized Code (1995)

- beyond basic techniques -

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Effect of
Array

Privatization

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Effect of Advanced
Parallel Reductions

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Effect of Generalized
Induction Variable Substitution

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Effect of Balanced Stripmining

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Effect of Increasing
Parallel Loop Granularity

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Effect of
Locality Enhancement

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Effect of Runtime
Data-Dependence Testing

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Part II
A Catalog of Advanced

Analysis and Transformation
Techniques

•  1 Data-dependence testing
•  2 Parallelism enabling transformations
•  3 Techniques for multiprocessors/multicores
•  4 Techniques for heterogeneous multicores
•  5 Techniques for other architectures
 (vector, distributed-memory,…)

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

1 Data Dependence Testing

DO i=1,n
 a(4*i) = . . .
 . . . = a(2*i+1)
ENDDO

the question to answer:
can 4*i ever be equal to 2*i+1 within i ∈[1,n] ?

In general: given
•  two subscript functions f and g and
•  loop bounds lower, upper.
Does
 f(i1) = g(i2) have a solution such that
 lower ≤ i1, i2 ≤ upper ?

Earlier, we have considered the simple case of a
1-dimensional array enclosed by a single loop:

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Data Dependence Tests: Concepts
Terms for data dependences between statements of loop iterations.
•  Distance (vector): indicates how many iterations apart are source and sink of

dependence.
•  Direction (vector): is basically the sign of the distance. There are different

notations: (<,=,>) or (-1,0,+1) meaning dependence (from earlier to later,
within the same, from later to earlier) iteration.

•  Loop-carried (or cross-iteration) dependence and non-loop-carried (or loop-
independent) dependence: indicates whether or not a dependence exists
within one iteration or across iterations.

–  For detecting parallel loops, only cross-iteration dependences matter.
–  equal dependences are relevant for optimizations such as statement reordering

and loop distribution.

•  Data Dependence Graph: a graph showing statements as nodes and
dependences between them as edges. For loops, usually there is only one
node per statement instance.

•  Iteration Space Graphs: the un-abstracted form of a dependence graph with
one node per statement instance. The statements of one loop iteration may
be represented as a single node.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

DDTests: doubly-nested loops

•  Multiple loop indices:
DO i=1,n
 DO j=1,m
 X(a1*i + b1*j + c1) = . . .
 . . . = X(a2*i + b2*j + c2)
 ENDDO
ENDDO

dependence problem:
a1*i1 - a2*i2 + b1*j1 - b2*j2 = c2 - c1
1 ≤ i1, i2 ≤ n
1 ≤ j1, j2 ≤ m

Almost all DD tests expect the coefficients ax to be integer constants.
Such subscript expressions are called affine.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

DDTests: even more complexity

•  Multiple loop indices, multi-dimensional array:
DO i=1,n
 DO j=1,m
 X(a1*i1 + b1*j1 + c1, d1*i1 + e1*j1 + f1) = . . .
 . . . = X(a2*i2 + b2*j2 + c2, d2*i2 +e2*j2 + f2)
 ENDDO
ENDDO

dependence problem:
a1*i1 - a2*i2 + b1*j1 - b2*j2 = c2 - c1
d1*i1 - d2*i2 + e1*j1 - e2*j2 = f2 - f1
1 ≤ i1, i2 ≤ n
1 ≤ j1, j2 ≤ m

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Data Dependence Tests:
The Simple Case

Note: variables i1, i2 are integers → diophantine equations.

Equation a * i1 - b* i2 = c has a solution if and only iff
 gcd(a,b) (evenly) divides c

 in our example this means: gcd(4,2)=2, which does not
divide 1 and thus there is no dependence.

If there is a solution, we can test if it lies within the loop
bounds. If not, then there is no dependence.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Euklid Algorithm: find gcd(a,b)
 Repeat
 a ← a mod b
 swap a,b
 Until b=0

Performing the GCD Test
•  The diophantine equation
 a1*i1 + a2*i2 +...+ an*in = c
has a solution iff gcd(a1,a2,...,an) evenly divides c

Examples:
 15*i +6*j -9*k = 12 has a solution gcd=3
 2*i + 7*j = 3 has a solution gcd=1
 9*i + 3*j + 6*k = 5 has no solution gcd=3

→The resulting a is the gcd

for more than two numbers:
gcd(a,b,c) = (gcd(a,gcd(b,c))

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Other DD Tests

•  The GCD test is simple but not accurate
•  Other tests

– Banerjee test: accurate state-of-the-art test
– Omega test: “precise” test, most accurate

for linear subscripts
– Range test: handles non-linear and

symbolic subscripts
– many variants of these tests

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

The Banerjee(-Wolfe) Test

Basic idea:
if the total subscript range accessed by ref1

does not overlap with the range accessed
by ref2, then ref1 and ref2 are
independent.

DO j=1,100 ranges accesses:
 a(j) = … [1:100]
 … = a(j+200) [201:300]
ENDDO  independent

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Banerjee(-Wolfe) Test continued

Weakness of the test:

DO j=1,100 ranges accessed:
 a(j) = … [1:100]
 … = a(j+5) [6:105]
ENDDO  independent ?

We did not take into consideration that only loop-carried
dependences matter for parallelization.

A loop-carried dependence only exists, if the reference in some
iteration, j1, conflicts with a reference in some later iteration, j2> j1

Consider this dependence

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Banerjee(-Wolfe) Test continued

•  Solution idea:
for loop-carried dependences, make use of the fact

that j in ref2 is greater than in ref1

DO j=1,100
 a(j) = …
 … = a(j+5)
ENDDO

This is commonly referred to as the
Banerjee test with direction vectors.

Ranges accessed by
 iteration j1 and any other
 iteration j2, where j1 < j2 :
 [j1]
 [j1+6:105]
 Independent for “>” direction

Clearly, this loop has a
dependence. It is an
anti-dependence from a(j
+5) to a(j)

Still considering the potential dependence
from a(j) to a(j+5)

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Considering direction vectors can increase the complexity of the DD test
substantially. For long vectors (corresponding to deeply-nested
loops), there are many possible combinations of directions.

A possible algorithm:
1.  try (*,*…*) , i.e., do not consider directions
2.  (if not independent) try (<,*,*…*), (=,*,*…*)
3.  (if still not independent) try (<,<,*…*),(<,>,*…*) ,(<,=,*…*)

 (=,<,*…*),(=,>,*…*) ,(=,=,*…*)
. . .
(This forms a tree)

DD Testing with Direction Vectors

*, * , . . . , *
= = =
< < <
 > >

(d1,d2,…,dn)

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Non-linear and Symbolic DD Testing

Weakness of most data dependence tests:
subscripts and loop bounds must be affine,
i.e., linear with integer-constant coefficients

Approach of the Range Test:
capture subscript ranges symbolically
compare ranges: find their upper and lower bounds

by determining monotonicity. Monotonically
increasing/decreasing ranges can be compared by
comparing their upper and lower bounds.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

The Range Test
Basic idea :
1. Find the range of array accesses made in a given

loop iteration
2. If the upper(lower) bound of this range is less

(greater) than the lower(upper) bound of the range
accesses in the next iteration, then there is no cross-
iteration dependence.

 Example: testing independence of the outer loop:

DO i=1,n
 DO j=1,m
 A(i*m+j) = 0
 ENDDO
ENDDO

range of A accessed in iteration ix: [ix*m+1:(ix+1)*m]

range of A accessed in iteration ix+1: [(ix+1)*m+1:(ix+2)*m]

ubx

lbx+1
ubx < lbx+1 ⇒ no cross-iteration dependence

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Range Test continued
DO i1=L1,U1
 ...
 DO in=Ln,Un
 A(f(i0,...in)) = ...
 ... = A(g(i0,...in))
 ENDDO
 ...
ENDDO

Assume f,g are monotonically increasing w.r.t. all ix:
 find upper bound of access range at loop k:
 successively substitute ix with Ux, x={n,n-1,...,k}
 lowerbound is computed analogously

If f,g are monotonically decreasing w.r.t. some iy,
then substitute Ly when computing the upper
bound.

Determining monotonicity: consider d = f(...,ik,...) - f(...,ik-1,...)
 If d>0 (for all values of ik) then f is monotonically increasing w.r.t. k
 If d<0 (for all values of ik) then f is monotonically decreasing w.r.t. k

What about symbolic coefficients?
•  in many cases they cancel out
•  if not, find their range (i.e., all possible values they can assume at this point
in the program), and replace them by the upper or lower bound of the range.

we need
 range

analysis

we need powerful expression
manipulation and comparison

utilities

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Range Test :
handling non-contiguous ranges

DO i1=1,u1
 DO i2=1,u2
 A(n*i1+m*i2)) = …
 ENDDO
ENDDO

The basic Range Test finds
independence
of the outer loop
 if n >= u2 and m=1
But not
 if n=1 and m>=u1

Issues:
•  legality of loop interchanging,
•  change of parallelism as a result of loop interchanging

Idea:
 - temporarily (during program analysis) interchange the loops,
 - test independence,
 - interchange back

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Some Engineering Tasks and
Questions for DD Test Pass Writers

- Start with the simple case: linear (affine) subscripts, single nests with 1-dim arrays. Subscript
and loop bounds are integer constants. Stride 1 loop, lower bound =1

- Deal with multiple array dims and loop nests
- Add capabilities for non-stride-1 loops and lower bounds ≠1
- How to deal with symbolic subscript coefficients and bounds
- Ignore dependences in private variables and reductions
- Generate DD vectors
- Mark parallel loops
- Things to think about:
 -- how to handle loop-variant coefficients
 -- how to deal with private, reduction, induction variables
 -- how to represent DD information
 -- how to display the DD info
 -- how to deal with non-parallelizable loops (IO op, function calls, other?)
 -- how to find eligible DO loops?
 -- how to find eligible loop bounds, array subscripts?
 -- what is the result of the pass? Generate DD info or set parallel loop flags?
 -- what symbolic analysis capabilities are needed?

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Data-Dependence Test, References
•  Banerjee/Wolfe test

–  M.Wolfe, U.Banerjee, "Data Dependence and its Application to Parallel
Processing", Int. J. of Parallel Programming, Vol.16, No.2, pp.137-178,
1987"

•  Power Test"
–  M. Wolfe and C.W. Tseng, The Power Test for Data Dependence, IEEE

Transactionson Parallel and Distributed Systems, IEEE Computer Society,
3(5), 591-601,1992.

•  Range test
–  William Blume and Rudolf Eigenmann. Non-Linear and Symbolic Data

Dependence Testing, IEEE Transactions of Parallel and Distributed
Systems, Volume 9, Number 12, pages 1180-1194, December 1998.

•  Omega test
–  William Pugh. The Omega test: a fast and practical integer programming

algorithm for dependence. Proceedings of the 1991 ACM/IEEE Conference
on Supercomputing,1991

•  I Test
–  Xiangyun Kong, David Klappholz, and Kleanthis Psarris, "The I Test: A New

Test for Subscript Data Dependence," Proceedings of the 1990 International
Conference on Parallel Processing, Vol. II, pages 204-211, August 1990.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

2 Parallelism Enabling
Techniques

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

DO i=1,n
 t = A(i)+B(i)
 C(i) = t + t**2
ENDDO

!$OMP PARALLEL DO
!$OMP+PRIVATE(t)
DO i=1,n
 t = A(i)+B(i)
 C(i) = t + t**2
ENDDO

scalar privatization array privatization

loop-carried
anti dependence

Privatization

!$OMP PARALLEL DO
!$OMP+PRIVATE(t)
DO j=1,n
 t(1:m) = A(j,1:m)+B(j)
 C(j,1:m) = t(1:m) + t(1:m)**2
ENDDO

DO j=1,n
 t(1:m) = A(j,1:m)+B(j)
 C(j,1:m) = t(1:m) + t(1:m)**2
ENDDO

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Array Privatization
Capabilities needed for

Array Privatization
•  array Def-Use Analysis
•  combining and intersecting

subscript ranges
•  representing subscript

ranges
•  representing conditionals

under which sections are
defined/used

•  if ranges too complex to
represent: overestimate
Uses, underestimate Defs

k = 5
DO j=1,n
 t(1:10) = A(j,1:10)+B(j)
 C(j,iv) = t(k)
 t(11:m) = A(j,11:m)+B(j)
 C(j,1:m) = t(1:m)
ENDDO

DO j=1,n
 IF (cond(j))
 t(1:m) = A(j,1:m)+B(j)
 C(j,1:m) = t(1:m) + t(1:m)**2
 ENDIF
 D(j,1) = t(1)
ENDDO

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Array Privatization continued

Array privatization algorithm:
•  For each loop nest:

–  iterate from innermost to outermost loop:
•  for each statement in the loop

–  find definitions; add them to the existing definitions in
this loop.

–  find array uses; if they are covered by a definition,
mark this array section as privatizable for this loop,
otherwise mark it as upward-exposed in this loop;

•  aggregate defined and upward-exposed, used ranges
(expand from range per-iteration to entire iteration
space); record them as Defs and Uses for this loop

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Some Engineering Tasks and
Questions for Privatization Pass Writers

•  Start with scalar privatization
•  Next step: array privatization with simple ranges (contiguous; no range

merge) and singly-nested loops
•  Deal with multiply-nested loops (-> range aggregation)
•  Add capabilities for merging ranges
•  Implement advanced range representation (symbolic bounds, non-

contiguous ranges)
•  Deal with conditional definitions and uses (too advanced for this course)
•  Things to think about

–  what symbolic analysis capabilities are needed?
–  how to represent advanced ranges?
–  how to deal with loop-variant subscript terms?
–  how to represent private variables?

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Array Privatization,
References

•  Peng Tu and D. Padua. Automatic Array Privatization.
Languages and Compilers for Parallel Computing. Lecture
Notes in Computer Science 768, U. Banerjee, D. Gelernter, A.
Nicolau, and D. Padua (Eds.), Springer-Verlag, 1994. "

•  Zhiyuan Li, Array Privatization for Parallel Execution of Loops,
Proceedings of the 1992 ACM International Conference on
Supercomputing"

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

ind = k
DO i=1,n
 ind = ind + 2
 A(ind) = B(i)
ENDDO

loop-carried
flow
dependence

Parallel DO i=1,n
 A(k+2*i) = B(i)
ENDDO

Induction Variable Substitution

This is the simple case of an induction variable

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Generalized Induction Variables
ind=k
DO j=1,n
 ind = ind + j
 A(ind) = B(j)
ENDDO

Parallel DO j=1,n
 A(k+(j**2+j)/2) = B(j)
ENDDO

DO i=1,n
 ind1 = ind1 + 1
 ind2 = ind2 + ind1
 A(ind2) = B(i)
ENDDO

DO i=1,n
 DO j=1,i
 ind = ind + 1
 A(ind) = B(i)
 ENDDO
ENDDO

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Recognizing GIVs
•  Pattern Matching:

–  find induction statements in a loop nest of the form iv=iv
+expr or iv=iv*expr, where iv is an scalar integer.

–  expr must be loop-invariant or another induction variable
(there must not be cyclic relationships among IVs)

–  iv must not be assigned in a non-induction statement

•  Abstract interpretation: find symbolic increments of iv
per loop iteration

•  SSA-based recognition

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Computing Closed Form, Substituting
additive GIVs

Loop structure L0: stmt type

For j: 1..ub
…
S1: iv=iv+exp I
…
S2: loop using iv L
…
S3: stmt using iv U
…
Rof

Step1: find the increment rel. to start of loop L
FindIncrement(L)
 inc=0
 foreach si of type I,L
 if type(si)=I inc += exp
 else /* L */ inc+= FindIncrement(si)
 inc_after[si]=inc
 inc_into_loop[L]= ∑1

j-1(inc) ; inc may depend
 return ∑1

ub(inc) ; on j

Step 2: substitute IV
Replace (L,initval)
 val = initval
 foreach si of type I,L,U
 if type(si)=L Replace(si,val)
 if type(si)=L,I val=initialval
 +inc_into_loop[L]
 +inc_after[si]
 if type(si)=U Substitute(si.expr,iv,val)

Main:
totalinc = FindIncrement(L0)
Replace(L0,iv)
InsertStatement(“iv = iv+totalinc”)

For coupled GIVs: begin with independent iv.

Insert this
statement

If iv is live-out

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Induction Variables, References
•  B. Pottenger and R. Eigenmann. Idiom Recognition in the Polaris

Parallelizing Compiler. ACM Int. Conf. on Supercomputing (ICS'95),
June 1995. (Extended version: Parallelization in the presence of
generalized induction and reduction variables.
www.ece.ecn.purdue.edu/~eigenman/reports/1396.pdf)"

•  Mohammad R. Haghighat , Constantine D. Polychronopoulos, Symbolic
analysis for parallelizing compilers, ACM Transactions on Programming
Languages and Systems (TOPLAS), v.18 n.4, p.477-518, July 1996 "

•  Michael P. Gerlek , Eric Stoltz , Michael Wolfe, Beyond induction
variables: detecting and classifying sequences using a demand-driven
SSA form, ACM Transactions on Programming Languages and
Systems (TOPLAS), v.17 n.1, p.85-122, Jan. 1995"

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

!$OMP PARALLEL PRIVATE(s)
s=0
!$OMP DO
DO i=1,n
 s=s+A(i)
ENDDO
!$OMP ATOMIC
sum = sum+s
!$OMP END PARALLEL DO i=1,n

 sum = sum + A(i)
ENDDO

loop-carried
flow
dependence

Reduction
Parallelization

Note, OpenMP has a reduction clause,
only reduction recognition is needed:
!$OMP PARALLEL DO
!$OMP+REDUCTION(+:sum)
DO i=1,n
 sum = sum + A(i)
ENDDO

DO i=1,num_proc
 s(i)=0
ENDDO
!$OMP PARALLEL DO
DO i=1,n
 s(my_proc)=s(my_proc)+A(i)
ENDDO
DO i=1,num_proc
 sum=sum+s(i)
ENDDO

Scalar Reductions

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Reduction Parallelization continued

Reduction recognition and parallelization
passes:

induction variable recognition
reduction recognition
privatization
data dependence test
reduction parallelization

compiler passes

recognizes and
annotates reduction
variables

for parallel loops with
reduction variables,
performance the
reduction
transformation

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

DIMENSION sum(m),s(m)
!$OMP PARALLEL PRIVATE(s)
s(1:m)=0
!$OMP DO
DO i=1,n
 s(expr)=s(expr)+A(i)
ENDDO
!$OMP ATOMIC
sum(1:m) = sum(1:m)+s(1:m)
!$OMP END PARALLEL

DIMENSION sum(m)
DO i=1,n
 sum(expr) = sum(expr) + A(i)
ENDDO

Reduction Parallelization
DIMENSION sum(m),s(m,#proc)
!$OMP PARALLEL DO
DO i=1,m
DO j=1,#proc
 s(i,j)=0
ENDDO
ENDDO
!$OMP PARALLEL DO
DO i=1,n
 s(expr,my_proc)=s(expr,my_proc)+A(i)
ENDDO
!$OMP PARALLEL DO
DO i=1,m
DO j=1,#proc
 sum(i)=sum(i)+s(i,j)
ENDDO
ENDDO

Note, OpenMP 1.0 does not support such array reductions

Array Reductions (a.k.a. irregular or
histogram reductions)

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Recognizing Reductions

•  Pattern Matching:
–  find reduction statements in a loop of the form

X=X ⊗ expr ,	
�	
�
where X is either scalar or an array expression (a[sub],

where sub must be the same on the LHS and the RHS),
⊗ is a reduction operation, such as +, *, min, max

–  X must not be used in any non-reduction statement
in this loop (however, there may be multiple reduction
statements for X)

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Performance Considerations
for Reduction Parallelization

•  Parallelized reductions execute substantially more code than
their serial versions ⇒ overhead if the reduction (n) is small.

•  In many cases (for large reductions) initialization and sum-up
are insignificant.

•  False sharing can occur, especially in expanded reductions, if
multiple processors use adjacent array elements of the
temporary reduction array (s).

•  Expanded reductions exhibit more parallelism in the sum-up
operation.

•  Potential overhead in initialization, sum-up, and memory used
for large, sparse array reductions ⇒ compression schemes can
become useful.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

DO j=1,n
 a(j) = c0+c1*a(j)+c2*a(j-1)+c3*a(j-2)

ENDDO

call rec_solver(a,n,c0,c1,c2,c3)

loop-carried
flow
dependence

Recurrence Substitution

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Basic idea of the recurrence solver:

DO j=1,40
 a(j) = a(j) + a(j-1)
ENDDO

DO j=1,10
 a(j) = a(j) + a(j-1)
ENDDO

DO j=11,20
 a(j) = a(j) + a(j-1)
ENDDO

DO j=21,30
 a(j) = a(j) + a(j-1)
ENDDO

DO j=31,40
 a(j) = a(j) + a(j-1)
ENDDO

Error: 0 ∆a(10) ∆a(10)+∆a(20) ∆a(10)+∆a(20)+∆a
(30)

Recurrence Substitution continued

Issues:
•  Solver makes several parallel sweeps through the iteration space (n). Overhead can
only be amortized if n is large.

•  Many variants of the source code are possible. Transformations may be necessary to
fit the library call format  additional overhead.

 DO 40 II=3,IL
 I = I -1
 DO 40 J=2,JL
 DW(I,J,N) = DW(I,J,N) -R*(DW(I,J,N) -DW(I+1,J,N))
 40 CONTINUE

Example from FLO52

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

DO i=1,4
 DO j=1,6
 A(i,j)= A(i-1,j-1)
 ENDDO
ENDDO

j

i Iteration space graph:
Shared regions show wavefronts of
iterations in the transformed code that can
be executed in parallel.

!$OMP PARALLEL DO
DO wave=1,?
 i = ?
 j = ?
 wsize = ?
 DO k=0,wsize-1
 A(i+k,j+k)=A(i-1+k,j-1+k)
 ENDDO
ENDDO

Loop Skewing

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

DO i=1,4
 DO j=1,6
 A(i,j)= A(i-1,j-1)
 ENDDO
ENDDO

j

i Iteration space graph:
Shared regions show wavefronts of
iterations in the transformed code that can
be executed in parallel.

!$OMP PARALLEL DO
DO wave=1,9
 i = max(5-wave,1)
 j = max(-3+wave,1)
 wsize = min(4,5-abs(wave-5))
 DO k=0,wsize-1
 A(i+k,j+k)=A(i-1+k,j-1+k)
 ENDDO
ENDDO

Loop Skewing

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

3  Techniques for
Multiprocessors:

Mapping parallelism to shared-memory
machines

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

PARALLEL DO i=1,n
 A(i) = B(i)
ENDDO

PARALLEL DO i=1,n
 C(i) = A(i)+D(i)
ENDDO

PARALLEL DO i=1,n
 A(i) = B(i)
 C(i) = A(i)+D(i)
ENDDO

loop fusion

Loop Fusion

•  Loop fusion is the reverse of loop distribution.
•  reduces the loop fork/join overhead.
•  Both transformations reorder computation;
  data dependences show legality

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Enforcing Data Dependence

•  Criterion for correct transformation and
execution of a computation involving a data
dependence with vector v : (=,…<,…*)

 Let Ls be the outermost loop with non-“=” DD-direction :
–  The direction at Ls must be “<”
–  Ls must be executed serially

Note that a data dependence is defined with respect to an
ordered (usually serial) execution. A fully parallel loop by
definition does not have any cross-iteration dependence.

Ls

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

PARALLEL DO ij=1,n*m
 i = 1 + (ij-1) DIV m
 j = 1 + (ij-1) MOD m
 A(i,j) = B(i,j)
ENDDO

PARALLEL DO i=1,n
 DO j=1,m
 A(i,j) = B(i,j)
 ENDDO
ENDDO

loop
coalescing

Loop Coalescing

Loop coalescing
•  can increase the number of iterations of a parallel loop  load balancing
•  adds additional computation  overhead

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

DO i=1,n
 PARALLEL DO j=1,m
 A(i,j) = A(i-1,j)
 ENDDO
ENDDO

loop
interchange

PARALLEL DO j=1,m
 DO i=1,n
 A(i,j) = A(i-1,j)
 ENDDO
ENDDO

Loop Interchange

Loop interchange affects:
•  granularity of parallel computation (compare the number of parallel loops started)
•  locality of reference (compare the cache-line reuse)
these two effects may impact the performance in the same or in opposite directions.

Loop interchange is subject to DD legality constraints.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

DO j=1,m
 DO i=1,n
 B(i,j)=A(i,j)+A(i,j-1)
 ENDDO
ENDDO

loop
blocking

DO PARALLEL i1=1,n,block
 DO j=1,m
 DO i=i1,min(i1+block-1,n)
 B(i,j)=A(i,j)+A(i,j-1)
 ENDDO
 ENDDO
ENDDO

Loop Blocking

This is basically the same transformation as stripming,
but followed by loop interchanging.

j

i

j

i

p1

p2

p3

p4

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Loop Blocking
continued

DO j=1,m
 DO i=1,n
 B(i,j)=A(i,j)+A(i,j-1)
 ENDDO
ENDDO

!$OMP PARALLEL
DO j=1,m
!$OMP DO
 DO i=1,n
 B(i,j)=A(i,j)+A(i,j-1)
 ENDDO
!$OMP ENDDO NOWAIT
ENDDO
!$OMP END PARALLEL

j

i

j

i

p1

p2

p3

p4

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Choosing the Block Size
The block size must be small enough so that all data references

between the use and the reuse fit in cache.

If the cache is shared, all processors use it simultaneously. Hence
the effective cache size appears smaller:

 block < cachesize / (r1+r2+2)*d*num_proc

Reference: Zhelong Pan, Brian Armstrong, Hansang Bae and Rudolf Eigenmann,
On the Interaction of Tiling and Automatic Parallelization, First International
Workshop on OpenMP (Wompat), 2005.

DO j=1,m
 DO k=1,block
 … (r1 data references)
 … = A(k,j) + A(k,j-d)
 … (r2 data references)
 ENDDO
ENDDO

Number of references made between the
access A(k,j) and the access A(k,j-d) when
referencing the same memory location:
(r1+r2+3)*d*block
 block < cachesize / (r1+r2+2)*d

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

DO i=1,n
 A(i) = B(i)
 DO j=1,m
 D(i,j)=E(i,j)
 ENDDO
ENDDO

DO i=1,n
 A(i) = B(i)
ENDDO

DO j=1,m
 DO i=1,n
 D(i,j)=E(i,j)
 ENDDO
ENDDO

loop
distribution
enables
interchange

Loop Distribution Enables
Other Techniques

In a program with multiply-nested loops, there can be a large number of
possible program variants obtained through distribution and interchanging

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

DO i=1,n
 A(i) = B(i)
ENDDO

PARALLEL DO (inter-cluster) i1=1,n,strip
 PARALLEL DO (intra-cluster) i=i1,min(i1+strip-1,n)
 A(i) = B(i)
 ENDDO
ENDDO

strip mining
for multi-level
parallelism

Multi-level Parallelism from
Single Loops

M
P P P P

M
P P P P

M
P P P P

M
P P P P

M cluster

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

References
•  High Performance Compilers for Parallel

Computing, Michale Wolfe, Addison-Wesley, ISBN
0-8053-2730-4.

•  Optimizing Compilers for Modern Architectures: A
Dependence-based Approach, Ken Kennedy and
John R. Allen, Morgan Kaufmann Publishers, ISBN
1558602860

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

4 Techniques for Vector
Machines

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Vector Instructions

A vector instruction operates on a number of
data elements at once.
Example: vadd va,vb,vc,32
vector operation of length 32 on vector registers va,vb, and vc
–  va,vb,vc can be

•  Special cpu registers or memory → classical
supercomputers

•  Regular registers, subdivided into shorter partitions (e.g.,
64bit register split 8-way) → multi-media extensions

–  The operations on the different vector elements
can overlap → vector pipelining

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Applications of Vector
Operations

•  Science/engineering applications are typically
regular with large loop iteration counts.
This was ideal for classical supercomputers, which

had long vectors (up to 256; vector pipeline startup
was costly).

•  Graphics applications can exploit “multi-
media” register features and instruction sets.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

DO i=1,n
 A(i) = B(i)+C(i)
ENDDO

A(1:n)=B(1:n)+C(1:n)

Basic Vector Transformation

DO i=1,n
 A(i) = B(i)+C(i)
 C(i-1) = D(i)**2
ENDDO

A(1:n)=B(1:n)+C(1:n)
C(0:n-1)=D(1:n)**2

The triplet notation is interpreted to mean “vector operation”. Notice that this
is not (necessarily) the same meaning as in Fortran 90,

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

DO i=1,n
 A(i) = B(i)+C(i)
 D(i) = A(i)+A(i-1)
ENDDO

DO i=1,n
 A(i) = B(i)+C(i)
ENDDO

DO i=1,n
 D(i) = A(i)+A(i-1)
ENDDO

A(1:n)=B(1:n)+C(1:n)
D(1:n)=A(1:n)+A(0:n-1)

dependence

loop
distribution

vectorization

Distribution and Vectorization
The transformation done on the previous slide involves loop distribution. Loop
distribution reorders computation and is thus subject to data dependence
constraints.

The transformation is not legal if there is a
lexical-backward dependence:

DO i=1,n
 A(i) = B(i)+C(i)
 C(i+1) = D(i)**2
ENDDO

loop-carried
dependence Statement reordering may help

resolve the problem. However, this is
not possible if there is a dependence
cycle.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Vectorization Needs
Expansion

... as opposed to privatization

DO i=1,n
 t = A(i)+B(i)
 C(i) = t + t**2
ENDDO

DO i=1,n
 T(i) = A(i)+B(i)
 C(i) = T(i) + T(i)**2
ENDDO

expansion

T(1:n) = A(1:n)+B(1:n)
C(1:n) = T(1:n)+T(1:n)**2

vectorization

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

DO i=1,n
 IF (A(i) < 0) A(i)=-A(i)
ENDDO

WHERE (A(1:n) < 0) A(1:n)=-A(1:n)

conditional vectorization

Conditional Vectorization

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

DO i=1,n
 A(i) = B(i)
ENDDO

DO i1=1,n,32
 DO i=i1,min(i1+31,n)
 A(i) = B(i)
 ENDDO
ENDDO

stripmining

Stripmining for Vectorization

Stripmining turns a single loop into a doubly-nested loop for two-level parallelism.
It also needs to be done by the code-generating compiler to split an operation into
chunks of the available vector length.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

5 Advanced Program
Analysis

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Interprocedural Constant
Propagation

Making constant values of variables
known across subroutine calls

Subroutine A

 j = 150

 call B(j)

END

Subroutine B(m)

DO k=1,100
 X(i)=X(i+m)
ENDDO

END

knowing that m>100 allows this
loop to be parallelized

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

An Algorithm for Interprocedural
Constant Propagation

Step 1: determine jump functions for all
subroutine arguments

Subroutine X(a,b,c)
e = 10
d = b+2
call somesub(c)
f = b*2
call this sub(a,d,c,e,f)
END

J1 = a (jump function of first parameter)
J2 = b+2
J3 = ⊥ (called bottom, meaning non-constant)
J4 = 10
J5 = ⊥

•  Mechanism for finding jump functions: (local) forward substitution and
 interprocedural MAYMOD analysis.
•  Here we assume jump functions are of the form P+const (P is a
 subroutine parameter of the callee).

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Constant Propagation Algorithm
continued

Step 2:
•  initialize all formal parameters to the

value T (called top, meaning non-yet-known)
•  for all jump functions:

–  if it is ⊥: set formal parameter value to ⊥
–  if it is constant and the value of the formal

parameter is the same constant or T : set it
to this constant

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Constant Propagation Algorithm
continued

Step 3:
1. put all formal parameters on a work queue
2. take a parameter from the queue:

for all jump functions that contain this parameter:
•  determine the value of the target parameter of this jump function.

Set it to this value, or to ⊥ if it is different from a previously set
value.

•  if the value of the target parameter changes, put this parameter
on the queue

3. repeat 2 until the queue is empty

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Interprocedural Data-
Dependence Analysis

•  Motivational examples:

DO i=1,n
 call clear(a,i)
ENDDO

Subroutine clear(x,j)
 x(j) = 0
END

DO i=1,n
 a(i) = b(i)
 call dupl(a,i)
ENDDO

Subroutine dupl(x,j)
 x(j) = 2*x(j)
END

DO i=1,n
 a(i) = b(i)
 call smooth(a,i)
ENDDO

Subroutine smooth(x,j)
 x(j) = (x(j-1)+x(j)+x(j+1))/3
END

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Interproc. DD-analysis

•  Overall strategy:
– subroutine inlining
– move loop into called subroutine
– collect array access information in callee

and use in the analysis of the caller
→ will be discussed in more detail

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Interproc. DD-analysis
•  Representing array access information

–  summary information
•  [low:high] or [low:high:stride]
•  sets of the above

–  exact representation
•  essentially all loop bound and subscript information is

captured

–  representation of multiple subscripts
•  separate representation
•  linearized

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Interproc. DD-analysis

•  Reshaping arrays
– simple conversion

•  matching subarray or 2-D→1-D
– exact reshaping with div and mod
–  linearizing both arrays
– equivalencing the two shapes

•  can be used in subroutine inlining
Important: reshaping may lose the implicit

assertion that array bounds are not violated!

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Symbolic Analysis

•  Expression manipulation techniques
–  Expression simplification/normalization
–  Expression comparison
–  Symbolic arithmetic

•  Range analysis
–  Find lower/upper bounds of variable values at a

given statement
•  For each statement and variable, or
•  Demand-driven, for a given statement and variable

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

6 Techniques Specific to
Distributed-memory

Machines

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Execution Scheme on a
Distributed-Memory Machine

M
P

M
P

M
P

M
P

Typical execution scheme:
•  All nodes execute the same program
•  Program uses node_id to select the
subcomputation to execute on each
participating processor and the data to access.
For example,

mystrip=⎡n/max_nodes⎤
lb = node_id*mystrip +1
ub = min(lb+mystrip-1,n)
DO i=lb,ub
 . . .
ENDDO

DO i=1,n

. . .

ENDDO

This is called Single-Program-Multiple-Data (SPMD) execution
scheme

how to place
and access
data ?

how/when to
synchronize ?

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Data Placement

Single owner:
•  Data is distributed onto the participating

processors’ memories

Replication:
•  Multiple versions of the data are placed

on some or all nodes.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

numbers indicate the node of a 4-processor
distributed-memory machine on which the
array section is placed

1 2 3 4 block
distribution

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4    cyclic
distribution

1 2 3 4    block-cyclic
distribution

1

IND(1) IND(2) IND(3) IND(4)    indexed
distribution

IND(5)

    index array

Data Distribution Schemes

Automatic data distribution is difficult because it is a
global optimization.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

DO i=1,n
 B(i) = A(i)+A(i-1)
ENDDO

send (A(ub),my_proc+1)
receive (A(lb-1),my_proc-1)
DO i=lb,ub
 B(i) = A(i)+A(i-1)
ENDDO

message
generation

•  lb,ub determine the iterations assigned to each processor.
•  array distributions assumed to match the iteration distribution
•  my_proc is the current processor number

Message Generation
for single-owner placement

Compilers for languages such as HPF (High-Performance
Fortran) have explored these ideas extensively

EXAMPLE

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Owner-computes Scheme

DO i=1,n
 A(i)=B(i)+B(i-m)
 C(ind(i))=D(ind2(i))
ENDDO

DO i=1,n
 send/receive what’s necessary
 IF I_own(A(i)) THEN
 A(i) = B(i)+B(i-m)
 ENDIF
 send/receive what’s necessary
 IF I_own(C(ind(i)) THEN
 C(ind(i))=D(ind2(i))
 ENDIF
ENDDO

•  nodes execute those iterations and statements whose LHS they own
•  first they receive needed RHS elements from remote nodes
•  nodes need to send all elements needed by other nodes
Example shows basic idea only. Compiler optimizations needed!

In general, the elements accessed by a processor are different from the elements
owned by this processor as defined by the data distribution

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Compiler Optimizations
for the raw owner computes scheme

•  Eliminate conditional execution
–  combine if statements with same condition
–  reduce iteration space if possible

•  Aggregate communication
–  combine small messages into larger ones
–  tradeoff: delaying a message enables message

aggregation but increases the message latency.
•  Message Prefetch

–  moving send operations earlier in order to reduce
message latencies.

there is a large number of research papers describing such techniques
R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Message Generation
for replication

Broadcast written data

Fully parallel section
w. local reads and writes

Fully parallel section
w. local reads and writes

time

Optimization: reduce broadcast
operations to necessary point-to-point
communication

Advantages:
• Fully parallel sections with local reads and writes
• Easier message set computation (no partitioning per processor needed)

Disadvantages:
• Not data-scalable
• More write operations necessary (but, collective communication can be used)

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

References
Data distribution and message generation:
(there is a large number of references on these topics)
•  A Novel Approach Towards Automatic Data Distribution, Jordi Garcia,

Eduard Ayguade and Jesus Labarta, Proc. Of Supercomputing ‘95, 1995.
•  An HPF compiler for the IBM SP2, M. Gupta and S. Midkiff and E. Schonberg

and V. Seshadri and D. Shields and K. Wang and W. Ching and T. Ngo,
Proceedings of Supercomputing '95, 1995.

Message Generation under Replication:
•  Towards Automatic Translation of OpenMP to MPI, Ayon Basumallik and

Rudolf Eigenmann, Proc. of the International Conference on Supercomputing,
ICS'05, 2005.

•  Optimizing Irregular Shared-Memory Applications for Distributed-Memory
Systems, Ayon Basumallik and Rudolf Eigenmann, Proc. of the ACM
Symposium on Principles and Practice of Parallel Programming (PPOPP'06),
ACM Press, 2006.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

7 Techniques for
Instruction-Level

Parallelization

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Implicit vs. Explicit ILP

Implicit ILP: ISA is the same as for sequential
programs.
–  most processors today employ a certain degree of

implicit ILP
–  parallelism detection is entirely done by the hardware,

however,
–  compiler can assist ILP by arranging the code so that

the detection gets easier.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Implicit vs. Explicit ILP
Explicit ILP: ISA expresses parallelism.

–  parallelism is detected by the compiler
–  parallelism is expressed in the form of

•  VLIW (very long instruction words): packing several instructions
into one long word

•  EPIC (Explicitly Parallel Instruction Computing): bundles of (up
to three) instructions are issued. Dependence bits can be
specified.

 Used in Intel/HP IA-64 architecture. The processor also
supports predication, early (speculative) loads, prepare-to-
branch, rotating registers.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

trace scheduling

Trace Scheduling
(invented for VLIW processors, still a useful terminology)

Two big issues must be solved by
all approaches:
1. Identifying the instruction sequence

that will be inspected for ILP.
 Main obstacle: branches
2. reordering instructions so that

machine resources are exploited
efficiently.

trace selection

trace compaction

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Trace Selection
•  It is important to have a large instruction window (block) within

which the compiler can find parallelism.
•  Branches are the problem. Instruction pipelines have to be

flushed/squashed at branches
•  Possible remedies:

–  eliminate branches
–  code motion can increase block size
–  block can contain out-branches with low probability
–  predicated execution

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Branch Elimination

•  Example:

 comp R0 R1
 bne L1:
 bra L2:
L1: . . .
 . . .

L2: . . .

 comp R0 R1
 beq L2:

L1: . . .
 . . .

L2: . . .

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Code Motion

I1 I1

I1

c1

I1
c2

I2 I3

c2

c1
I1 I3

c1

I1 I2

Code motion can increase window sizes and eliminate subtrees

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

IF (a>0) THEN
 b=a
ELSE
 b=-a
ENDIF

p = a>0
p: b=a
p: b=-a

; assignment of predicate
; executed if predicate true
; executed if predicate false

Predicated Execution

Predication
•  increases the window size for analyzing and exploiting parallelism
•  increases the number of instructions “executed”
These are opposite demands!

Compare this technique to conditional vectorization

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

ind = i0
. . .
ind = ind+1
. . .
ind = ind+1

dependence

dependence

ind = i0
. . .
ind = i0+1
. . .
ind = i0+2

sum = sum+expr1
. . .
sum = sum+expr2
. . .
sum = sum+expr3
. . .
sum = sum+expr4

dependence

dependence

s1=expr1
. . .
s1=s1+expr2
. . .
s2=expr3
. . .
s2=s2+expr4
. . .
sum=sum+s1+s2

dependence

shaded blocks of statements are independent of each other and can
be executed as parallel instructions

Dependence-removing ILP
Techniques

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Speculative ILP
Speculation is performed by the architecture in various forms

–  Superscalar processors: compiler only has to deal with the
performance model. ISA is the same as for non-speculative
processors

–  Multiscalar processors: (research only) compiler defines tasks that
the hardware can try execute speculatively in parallel. Other than
task boundaries, the ISA is the same.

 References:
•  Task Selection for a Multiscalar Processor, T. N. Vijaykumar and

Gurindar S. Sohi, The 31st International Symposium on
Microarchitecture (MICRO-31), pp. 81-92, December 1998.

•  Reference Idempotency Analysis: A Framework for Optimizing
Speculative Execution, Seon-Wook Kim, Chong-Liang Ooi, Rudolf
Eigenmann, Babak Falsafi, and T.N. Vijaykumar,, In Proc. of
PPOPP'01, Symposium on Principles and Practice of Parallel
Programming, 2001.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Compiler Model of Explicit
Specluative Parallel Execution

(Multicalar Processor)
•  Overall Execution: speculative

threads choose and start the
execution of any predicted next
thread.

•  Data Dependence and Control
Flow Violations lead to roll-backs.

•  Final Execution: satisfies all cross-
segment flow and control
dependences.

•  Data Access: Writes go to thread-
private speculative storage. Reads
read from ancestor thread or
memory.

•  Dependence Tracking: Data
Flow and Control Flow
dependences are detected
directly. Lead to roll-back. Anti
and Output dependences are
satisfied via speculative
storage.

•  Segment Commit: Correctly
executed threads (I.e., their final
execution) commit their
speculative storage to the
memory, in sequential order.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

8 OpenMP for

Distributed Parallel Systems

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Is OpenMP a Useful
Programming Model for
Distributed Processors?

•  OpenMP is a parallel programming model that assumes a shared
address space

 #pragma OMP parallel for
 for (i=1; 1<n; i++) {a[i] = b[i];}

•  Why is it difficult to implement OpenMP for distributed processors?
The compiler or runtime system will need to
–  partition and place data onto the distributed memories
–  send/receive messages to orchestrate remote data accesses
HPF (High Performance Fortran) was a large-scale effort to do so - without

success
•  So, why should we try again ?

OpenMP is an easier programming (higher-productivity?) programming model.
OpenMP

–  allows programs to be parallelized incrementally, starting from the serial
versions,

–  relieves the programmer of the task of managing the movement of logically
shared data.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Baseline Translation of
OpenMP to MPI Compiler

•  Execution Model
–  SPMD model

•  Serial Regions are replicated on all processes
•  Iterations of parallel for loops are distributed (using

static block scheduling)
–  Shared Data is allocated on all nodes

•  There is no concept of “owner” (contrast to HPF)
 There are only producers and consumers of shared data

•  At the end of a parallel loop, producers communicate
shared data to potential future consumers

•  The compiler uses array section analysis for
summarizing array accesses

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Baseline Translation

Translation Steps:
1.  Identify all shared data
2.  Create annotations for accesses to shared data

(use regular section descriptors to summarize
array accesses)

3.  Use interprocedural data flow analysis to identify
potential consumers; incorporate OpenMP
relaxed consistency specifications

4.  Create message sets to communicate data
between producers and consumers

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Message Set Generation
< write A [l1(p) : u1(p)] >

 <read a [l2(p) : u2(p)] > <write A [l3(p) : u3(p)]>

<read A[l4(p) : u4(p)]>

…

…

…

Message Set at RSD vertex V1, for
array A from process p to process q
computed as

SApq = Elements of A with subscripts in
the set

{[l1(p),u1(p)]∩[l2(q),u2(q)]} U
{[l1(p),u1(p)]∩[l4(q),u4(q)]}

V1:

<read A [5(p) : u5(p)]>

U ([l1(p),u1(p)]∩{[l5(q),u5(q)]-[l3(p),u3
(p)]})

Processor p writes array
section A from l1(p) to u1(p)

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

mydo = 1 ;

#pragma omp parallel

{

/* Loop L1 */

#pragma omp for nowait

 for(j=1;j<N;j++) {

#pragma omp flush(myflag)

 …myflag.. ;

 A[j] = …

 }

/* Loop L2 */

#pragma omp for nowait

 for(j=1;j<M;j++) {

 … = A[i]...

 }

 myflag++ ;

}

myflag = 1

myflag++

/* Loop Body for Loop L1 */

 …myflag..

 ….

/* loop exit for Loop L1 */

/*loop_entry for Loop L1*/

<A, lb(1,N,p), ub(1,N,p), write> /* loop_entry for Loop L2 */

<A, lb(1,M,p), ub(1,M,p), read>

/* loop exit for Loop L2 */

/*Start_parallel*/

/*End_parallel*/

e1

v1
v2

/* Loop Body for Loop L2 */

 ….

e3

e2

e4

Incorporating OpenMP Relaxed
Memory Consistency Specifications

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Translation of Irregular
Accesses

•  Irregular Access – A[B[i]], A[f(i)] where B[i] is a
subscript array or f(i) is a non-affine function of the
loop index.
–  Reads: assumed the whole array accessed
–  Writes: inspect at runtime, communicate at the end of

parallel loop
•  A key property is Monotonicity : i > j → B[i] > B[j]

Monotonicity is useful because it provides bounds on the
irregular subscript in terms of the loop bounds

•  For lb<i<ub, B[lb] < B[i] < B[ub]
Monotonicity allows the compiler to

•  tighten array sections
•  avoid runtime inspection of writtten array sections that do not

overlap

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Optimizations based on
Collective Communication

•  Recognition of Reduction Idioms
–  Recognize program patterns that implement array reductions

– usually: combination of parallel loop and critical section.
–  Translate them to MPI_Reduce / MPI_Allreduce functions.

•  Casting sends/receives in terms of alltoall calls
–  In general, communication between producers and

consumers are done using non-blocking send/recv and
MPI_Wait

–  There may be insufficient distance between the production
and consumption points in the program to allow overlap of
computation and communication

–  When the producer-consumer relationship is many-to-many
and there is insufficient distance between producers and
consumers, cast the sends/recvs into a single MPI_Alltoallv
call

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Performance Evaluation
of Baseline Translation

Platform I – Cluster of sixteen PIII 800 MHz Linux nodes, with 256 MB memory per
node, connected by a commodity 100 Mbps Ethernet network.

From SPEC OMP2001 From NAS Par. Benchmarks

Our OpenMP to MPI
translator

Hand-coded
MPI

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Performance on IBM-SP2
Platform II – Sixteen IBM SP-2 WinterHawk-II nodes connected by a high-performance switch.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Comparison with SDSM on
Linux Cluster

0

2

4

6

8

10

12

S
p

e
e
d

u
p

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
CG EP FT LU IS ART EQUAKE

"OpenMP on SDSM" "OpenMP translated to MPI"

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Performance Comparison with
HPF on Linux Cluster

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

We can do more for
Irregular Applications

L1 : #pragma omp parallel for
 for(i=0;i<10;i++)
 A[i] = ...

L2 : #pragma omp parallel for
 for(j=0;j<20;j++)
 B[j] = A[C[j]] + ...

•  Subscripts of accesses to shared
arrays not always analyzable at
compile-time

•  Baseline OpenMP to MPI
translation:

–  Conservatively estimate that each
process accesses the entire array

–  Try to deduce properties such as
monotonicity for the irregular
subscript to refine the estimate

•  Still, there may be redundant
communication

–  Runtime tests (inspection) are
needed to resolve accesses

Array
A

produced by
process 2

produced by
process 1

1, 3, 5, 0, 2 ….. 2, 4, 8, 1, 2 ... Array
C

accesses on
process 1

accesses on
process 2 R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Inspection
•  Inspection allows accesses to be differentiated (at runtime) as

local and non-local accesses.
•  Inspection can also map iterations to accesses. This mapping

can then be used to re-order iterations:
–  first, iterations that access local data
–  then, iterations that access remote data
=> Communication of remote data can be overlapped with the

computation of iterations that access local data

Array
A

1, 3, 5, 0, 2 ….. 2, 5, 8, 1, 2 ... C[i]

accesses on
process 1

accesses on
process 2

 0, 1, 2, 3, 4, …….. 10, 11, 12, 13, 14 ... Index i

0, 1, 2, 3, 5 ….. . 5, 8, 1, 2, 2, ...
 3, 0, 4, 1, 2, …….. 11, 12, 13, 10, 14 ...

accesses on
process 1

accesses on
process 2

reorder
iterations

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Loop Restructuring
•  Simple iteration reordering may

not be sufficient to expose the
full set of possibilities for
computation-communication
overlap.

L1 : #pragma omp parallel for
 for(i=0;i<N;i++)
 p[i] = x[i] + alpha*r[i] ;

L2 : #pragma omp parallel for
 for(j=0;j<N;j++) {
 w[j] = 0 ;
 for(k=rowstr[j];k<rowstr[j+1];k++)

S2: w[j] = w[j] + a[k]*p[col[k]] ;
 }

Reordering loop L2 may still not club
together accesses from different sources

L1 : #pragma omp parallel for
 for(i=0;i<N;i++)
 p[i] = x[i] + alpha*r[i] ;

L2-1 : #pragma omp parallel for
 for(j=0;j<N;j++) {
 w[j] = 0 ;
 }

L2-2: #pragma omp parallel for
 for(j=0;j<N;j++) {
 for(k=rowstr[j];k<rowstr[j+1];k++)
 S2: w[j] = w[j] + a[k]*p[col[k]] ;
 }

Distribute loop
L2 to form loops
L2-1 and L2-2

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Loop Restructuring continued

L1 : #pragma omp parallel for
 for(i=0;i<N;i++)
 p[i] = x[i] + alpha*r[i] ;

L2-1 : #pragma omp parallel for
 for(j=0;j<N;j++) {
 w[j] = 0 ;
 }

L2-2: #pragma omp parallel for
 for(j=0;j<N;j++) {
 for(k=rowstr[j];k<rowstr[j+1];k++)
 S2: w[j] = w[j] + a[k]*p[col[k]] ;
 }

L1 : #pragma omp parallel for
 for(i=0;i<N;i++)
 p[i] = x[i] + alpha*r[i] ;

L2-1 : #pragma omp parallel for
 for(j=0;j<N;j++) {
 w[j] = 0 ;
 }

L3: for(i=0;i<num_iter;i++)
 w[T[i].j] = w[T[i].j] +
 a[T[i].k]*p[T[i].col] ;

Coalesce nested
loop L2-2 to form
loop L3

Reorder iterations of
loop L3 to achieve
computation-
communication overlap

Final restructured and reordered loop The T[i] data structure is created and
filled in by the inspector R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Achieving Actual Computation-
Communication Overlap

•  Non-blocking send/recv calls may not actually
progress concurrently with computation.
–  Use a multi-threaded runtime system with separate

computation and communication threads – on dual CPU
machines these threads can progress concurrently.

•  The compiler extracts the send/recvs along with the
packing/unpacking of message buffers into a
communication thread.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Initiate sends to process q,r

Execute iterations that
access local data

Wait for receives from process q
to complete

Execute iterations that access data
received from process q

Pack data and send to processes
q and r.

Receive data from process q

Wait for receives from process r to
complete

Computation Thread on
Process p

Communication Thread
on Process p

Receive data from process r

Execute iterations that access data
received from process r

Program
Timeline

tsend

trecv-q

trecv-r

tcomp-p

tcomp-q

tcomp-r

twait-r

twait-q

Wake up communication thread

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

0

50

100

150

200

250

300

350

400

450

1 2 4 8 16

Number of Processors

Ti
m

e
(in

 S
ec

on
ds

)

Actual Time Spent in Send/Recv Computation available for Overlapping
Actual Wait Time

Performance of
Equake

Computation-
communication overlap
in Equake

0

200

400

600

800

1000

1200

1 2 4 8 16

Nodes

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Hand-Coded MPI Baseline (No Inspection)
Inspection (No Reordering) Inspection and Reordering

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

0

2

4

6

8

10

12

1 2 4 8 16

Number of Nodes

Ti
m

e
(s

ec
on

ds
)

Time spent in Send/Recv Computation Available for Overlapping Actual Wait Time

0

20

40

60

80

100

120

140

1 2 4 8 16

Number of Nodes

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Hand-coded MPI Baseline Inspector without Reordering Inspection and Reordering

Performance of
Moldyn

Computation-
communication overlap
in Moldyn

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

0

200

400

600

800

1000

1200

1400

1 2 4 8 16

Number of Nodes

Ex
ec

ut
io

n
Ti

m
e

(in
 s

ec
on

ds
)

NPB-2.3-MPI Baseline Translation
Inspector without Reordering Inspector with Iteration Reordering

0
10
20
30
40
50
60
70
80
90

100

1 2 4 8 16

Number of Nodes

Ti
m

e
(s

ec
on

ds
)

Time spent in Send/Recv Computation available for Overlap Actual Wait Time

169
339

Performance of CG

Computation-
communication overlap
in CG

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Summary
OpenMP for Distributed Systems

•  There is hope for easier programming models on distributed processing
systems (DPS)

•  OpenMP can be translated effectively onto DPS; we have used
benchmarks from

–  SPEC OMP
–  NAS
–  additional irregular codes

•  Caveats:
–  black-belt programmers will always be able to do better
–  advanced compiler technology is involved. There will be performance

surprises
–  Larger set of and full compiler implementation are needed
 => this is ongoing work

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

References
•  Towards Automatic Translation of OpenMP to MPI, Ayon

Basumallik and Rudolf Eigenmann, Proc. of the International
Conference on Supercomputing, ICS'05, pages 189--198, 2005.

•  Optimizing Irregular Shared-Memory Applications for Distributed-
Memory Systems, Ayon Basumallik and Rudolf Eigenmann, Proc. of
the ACM Symposium on Principles and Practice of Parallel
Programming (PPOPP'06), ACM Press, 2006.

•  Incorporation of OpenMP Memory Consistency into Conventional
Dataflow Analysis, Ayon Basumallik and Rudolf Eigenmann, Proc. of
IWOMPʼ08 Intʼl Workshop on OpenMP, 2008"

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

9. Autotuning:
Moving Compile-time

Decisions Into Runtime

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Why Autotuning ?
my bias

Ultimate goal: Dynamic Optimization Support For Compilers and More
•  Runtime decisions for compilers are necessary because compile-time

decisions are too conservative
–  Insufficient information about program input, architecture
–  When to apply what transformation in which flavor?
–  Polaris compiler has some 200 switches

Example of an important switch: parallelism threshold
–  Early runtime decisions:

•  Multi-version loops, runtime data-dependence test, 1980s
•  My goals:

–  Looking for tuning parameters and evidence of performance difference
–  Go beyond the “usual”: unrolling, blocking, reordering
–  Show performance on real programs

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Is there Potential ?
You bet!
•  Imagine you (the compiler) had full knowledge of

input data and execution platform of the program

0 100% knowledge

P
er

fo
rm

an
ce

1

10

100
“Amdahl’s law
of dynamic
optimization” You are here

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Early Results on Fully-
Dynamic Adaptation

•  ADAPT system (Michael Voss - 2000)
•  Features:

–  Triage
•  tune the most deserving program sections first

–  Used remote compilation
•  Allowed standard compilers and all options to be used

–  AL - adapt language

•  Issues:
–  Scalability to large number of optimizations
–  Shelter and re-tune

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

More Recent Work
Offline Tuning - “Profile-time” tuning

Zhelong Pan
Challenges:
1.  Explore the optimization space

Empirical optimization algorithm - CGO 2006

2.  Comparing performance
 Fair Rating methods - SC 2004

•  Comparing two (differently optimized) subroutine invocations

3.  Choosing procedures as tuning candidates
Tuning section selection - PACT 2006

•  Program partitioning into tuning sections
Two goals : increase program performance and reduce

tuning time

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Search
Algorithm

Version
Generation

Performance Evaluation
(Program Execution)

Start

Final
Version

Whole-Program Tuning

Search Algorithms
•  BE: batch elimination

–  Eliminates “bad” optimizations in a batch => fast
–  Does not consider interaction => not effective

•  IE: iterative elimination
–  Eliminates one “bad” optimization at a time => slow
–  Considers interaction => effective

•  CE: combined elimination (final algorithm)
–  Eliminates a few “bad” optimizations at a time

•  Other algorithms
–  optimization space exploration, statistical selection,

genetic algorithm, random search

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Performance Improvement

0

10

20

30

40

50

60

70

a
m
m
p

a
p
p
lu

a
p
s
i

a
rt

e
q
u
a
k
e

m
e
s
a

m
g
ri
d

s
ix
tr
a
c
k

s
w
im

w
u
p
w
is
e

G
e
o
M
e
a
n

R
e

la
ti

v
e

 p
e

rf
o

rm
a

n
c

e
 i

m
p

ro
v

e
m

e
n

t
p

e
rc

e
n

ta
g

e
 (

%
) Whole_Train PEAK_Train Whole_Ref PEAK_Ref

Tuning Goal: determine the best combination of GCC options
R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Tuning at the Procedure Level
 Tuning Section Selection (TSS)

 Rating Method Analysis (RMA)

 Code Instrumentation (CI)

 Driver Generation (DG)

 Performance Tuning (PT)

 Final Version Generation (FVG)

Pre-Tuning

Post-Tuning

During Tuning

(1)

(6)

(5)

(4)

(3)

(2)

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Reduction of Tuning Time
through Procedure-level

Tuning

62.22
50.99

105.76

69.23
63.14

89.28

50.59

87.32

36.96

102.97

68.28

2.33 7.06 11.21
4.03 1.79 2.33 3.38 4.22 2.59 1.61 3.36

0.00

20.00

40.00

60.00

80.00

100.00

120.00

am
m
p

ap
pl
u

ap
si ar
t

eq
ua
ke

m
es
a

m
gr
id

si
xt
ra
ck

sw
im

w
up
w
is
e

G
eo
M
ea
n

N
or

m
al

iz
ed

 tu
ni

ng
 ti

m
e

Whole PEAK

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Tuning Time Components

0%

20%

40%

60%

80%

100%

am
m
p

ap
pl
u

ap
si ar
t

eq
ua
ke

m
es
a

m
gr
id

si
xt
ra
ck

sw
im

w
up
w
is
e

A
ve
ra
gePe

rc
en

ta
ge

 o
f t

he
 to

ta
l t

im
e

sp
en

t i
n

tu
ni

ng

TSS RMA CI DG PT FVG

 Tuning Section Selection (TSS)

 Rating Method Analysis (RMA)

 Code Instrumentation (CI)

 Driver Generation (DG)

 Performance Tuning (PT)

 Final Version Generation (FVG)

(1)

(6)

(5)

(4)

(3)

(2)

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Ongoing Work

Beyond autotuning of compiler options
•  New applications of the tuning system

– MPI parameter tuning
– Tuning library selection - (ScalaPack, ...)
– OpenMP to MPI translator

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

TCP Buffer Size Effect on
NPB

TCP Buffer Size Effect

-15

-10

-5

0

5

10

15

Default (16K) 32K 64K 128K 256K 512K

TCP Buffer Size

S
pe

ed
 U

p
(%

)

BT.A.4

CG.A.8

CG.B.4

FT.A.16

IS.A.16

IS.A.4

IS.B.16

Target system: Hamlet (Dell IA-32 P4 nodes) clusters in Purdue RAC

Used MPI: MPICH1

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Alltoall collective call
performance

alltoall performance

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

default basic linear pairwise modified bruck

alltoall algorithms

S
pe

ed
 U

p
(%

)

FT.A.4

FT.A.8

FT.A.16

IS.C.4

IS.C.8

IS.B.16

Target system: Hamlet (Dell IA-32 P4 nodes) clusters in Purdue RAC

Used MPI: Open MPI 1.2.2
R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Segmentation Effect on Basic
Linear Alltoall Algorithm

alltoll performance (basic linear algorithm)

0

2

4

6

8

10

12

14

No s
eg

men
t 32 64 12

8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

32
76

8

Segmentation (bytes)

S
pe

ed
 U

p
(%

)

FT.A.4

FT.A.8

FT.A.16

Target system: Hamlet (Dell IA-32 P4 nodes) clusters in Purdue RAC

Used MPI: Open MPI 1.2.2 R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Automatic Tuning for Multicore

•  Starting point was the Polaris compiler
–  200 switches

•  Early results on dynamic serialization
•  Goal: parallelizing compiler that never lowers

the performance of a program
•  OpenMP to MPI translation
•  Tuning NICA architectures

–  Multicore + niche capabilities (accelerators and
more)

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Conclusions and Discussion

Dynamic Adaptation is one of the most exciting research topics

There are still issues to Sink your Teeth in
•  Runtime overhead: when to shelter/re-tune
•  Fine-grain tuning
•  Model-guided pruning of search space
•  Architecture of an autotuner

–  If we could agree, we could plug-in our modules

•  AutoAuto - autotuning autoparallelizer
•  How to get order(s) of magnitude improvement

–  Wanted: tuning parameters and their performance effects

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

Tuning Speculative Secction
Selection

Benchmark Single Thread[Vijay Micro 98][Johnson PLDI 04] [Johnson PPoPP 07]
 IPC Min-Cut Greedy Hierarchical

bzip2 0.70 1.01 1.09 1.07 1.17
gzip 0.72 1.27 1.35 1.11 1.17
mcf 0.07 1.01 1.63 1.07 1.09
parser 0.51 0.87 1.24 1.20 1.18
vpr 0.63 1.38 1.09 1.38 1.38
geometric mean 1.09 1.27 1.16 1.19 "

Speedup factors

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010

