
Zha JP, Feng XY, Qiao L. Modular verification of SPARCv8 code. JOURNAL OF COMPUTER SCIENCE AND TECHNO-

LOGY 35(6): 1382–1405 Nov. 2020. DOI 10.1007/s11390-020-0536-9

Modular Verification of SPARCv8 Code

Jun-Peng Zha1,2, Xin-Yu Feng1,2,∗, Member, CCF, ACM, and Lei Qiao3, Member, CCF

1Department of Computer Science and Technology, Nanjing University, Nanjing 210023, China
2State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
3Beijing Institute of Control Engineering, Beijing 100080, China

E-mail: jpzha@smail.nju.edu.cn; xyfeng@nju.edu.cn; fly2moon@aliyun.com

Received April 11, 2020; revised October 24, 2020.

Abstract Inline assembly code is common in system software to interact with the underlying hardware platforms. The

safety and correctness of the assembly code is crucial to guarantee the safety of the whole system. In this paper, we

propose a practical Hoare-style program logic for verifying SPARC (Scalable Processor Architecture) assembly code. The

logic supports modular reasoning about the main features of SPARCv8 ISA (instruction set architecture), including delayed

control transfers, delayed writes to special registers, and register windows. It also supports relational reasoning for refinement

verification. We have applied it to verify that there is a contextual refinement between a context switch routine in SPARCv8

and a switch primitive. The program logic and its soundness proof have been mechanized in Coq.

Keywords Scalable Processor Architecture Version 8 (SPARCv8), assembly code verification, context switch, Coq,

refinement verification

1 Introduction

Operating system kernels are at the most founda-

tional layer of computer software systems. To interact

directly with hardware, many important components

in OS kernels are implemented in assembly, such as the

context switch code or the code that manages inter-

rupts. In addition, there is also code written directly in

assembly to achieve high performance (e.g., memcpy in

linux v2.6.17.10 1○). Correctness of such assembly code

is crucial to ensure the safety and security of the whole

system. However, assembly code verification remains a

challenging task in existing work on OS kernel verifi-

cation (e.g., [1–3]), where the assembly code is either

unverified or verified based on operational semantics

without a general program logic.

SPARC (Scalable Processor Architecture) is a

CPU instruction set architecture (ISA) with high-

performance and great flexibility 2○. It has been widely

used in various processors for workstations and em-

bedded systems. SPARCv8 ISA has some interesting

features, which make it a non-trivial task to design a

Hoare-style program logic for assembly code.

• Delayed Control Transfers. SPARCv8 has two

program counters pc and npc. The npc register points

to the next instruction to run. Control-transfer instruc-

tions in SPARCv8 change npc instead of pc to the tar-

get program point, while pc takes the original value of

npc. This makes the control transfer happen one cycle

later than the execution of the control transfer instruc-

tions.

• Delayed Writes. The wr instruction that writes

a special class of registers such as the window invalid

mask register wim does not take effect immediately.

That is, “they may take until completion of the third in-

struction following the write instruction to consummate

Regular Paper

Special Section on Software Systems 2020

A preliminary version of the paper was published in the Proceedings of APLAS 2018.

This work was supported by the National Natural Science Foundation of China under Grant No. 61632005.
∗Corresponding Author
1○Linux v2.6.17.10. https://elixir.bootlin.com/linux/v2.6.17.10/source/arch, Sept. 2020.
2○The SPARC Architecture Manual Version 8. https://gaisler.com/doc/sparcv8.pdf, Sept. 2020.

©Institute of Computing Technology, Chinese Academy of Sciences 2020

http://dx.doi.org/10.1007/s11390-020-0536-9
http://dx.doi.org/10.1007/s11390-020-0536-9

Jun-Peng Zha et al.: Modular Verification of SPARCv8 Code 1383

their write operation. The number of delay instructions

(0 to 3) is implementation-dependent.”

• Register Windows. SPARCv8 uses register win-

dows and a window rotation mechanism to avoid saving

contexts in the stack directly and achieves high perfor-

mance in context management.

We use a simple example in Fig.1 to show these

three features.

CALLER : ChangeY :

...
1 mov 1, %o0
2 call ChangeY
3 save %sp, −64, %sp

4 mov %o0, %l0

...

5 rd Y, %l0
6 wr %i0, 0, Y
7 nop

8 nop

9 nop

10 ret

11 restore %l0, 0, %o0

(a) (b)

Fig.1. Example for SPARC code [4]. (a) Function CALLER. (b)
Function ChangeY.

SPARCv8 has 32 general registers, which are split

into four logic groups as global (r0–r7), out (r8–r15),

local (r16–r23) and in (r24–r31) registers. Correspond-

ingly, we give aliases “%g0–%g7”, “%o0–%o7”, “%l0–

%l7” and “%i0–%i7” for these groups respectively.

CALLER in Fig.1(a) calls ChangeY, which updates the

“special register” Y and returns its original value.

ChangeY in Fig.1(b) requires an input parameter as

the new value for the special register Y. CALLER calls

ChangeY at line 2, and pc and npc point to lines 2

and 3 respectively at this moment. The call instruction

changes the value of pc to npc and lets npc point to the

entry of ChangeY at line 5, which means the control-flow

will not transfer to ChangeY in the next cycle, but in the

cycle after the execution of the save instruction follow-

ing the call. Similarly, when ChangeY returns (at line

10), the control is transferred back to the caller after

executing the restore instruction at line 11. We call

this feature “delayed control transfers”.

SPARCv8 uses the save instruction (at line 3 in the

example) to save the current context and the restore

instruction (at line 10) to restore it. As explained

above, among the 32 general registers, the out, local and

in registers form the “current” register window. The lo-

cal registers are for private use in the current context.

The in and out registers are shared with adjacent regis-

ter windows for parameters passing. The save instruc-

tion rotates the register window from the current one to

the next. Then the local and in registers in the original

window are no longer accessible, and the original out

registers become the in registers in the current window.

In Fig.1, CALLER uses the save instruction (at line 3) to

save its context (local and in registers) and rotate the

register window (so that the out registers become the in

registers). Thus, the %i0 register assessed in ChangeY

at line 6 is the same register as the %o0 modified in

CALLER at line 1. The restore instruction does the in-

verse. The arguments taken by the save and restore

instructions are irrelevant here and can be ignored.

At line 6, the wr instruction tries to update the spe-

cial register Y with the value of %i0⊕0 (bitwise exclusive

OR). Note that the %i0 register here is the same regis-

ter as %o0 at line 1. However, the write is delayed forX

cycles, where X is some predefined system parameter

that ranges from 0 to 3. For portability, programmers

usually do not rely on the exact value of X and as-

sume it takes the maximum value of 3. Therefore three

nop instructions are inserted. Reading of Y earlier than

line 9 may give us the old value. This feature is called

“delayed writes”.

These features make the semantics of the SPARCv8

code context-dependent. For instance, a read of a spe-

cial register (e.g., the register Y in the above example)

needs to make sure that there are enough instructions

executed since the most recent “delayed write”. As

another example, the instruction following the call in-

struction can be any instruction in general, but it is not

supposed to update register r15, which contains the re-

turn address saved by the call instruction. In addition,

the delayed control transfer and the register windows

also allow highly flexible calling conventions. Together,

they make it a challenging task to have a Hoare-style

program logic for local and modular reasoning of the

SPARCv8 assembly code.

Working towards a certified OS kernel for aerospace

crafts whose inline assembly is written in SPARCv8, we

try to address these challenges and propose a practical

program logic for realistically modelled SPARCv8 code.

We have applied our logic to verify the main body of

the task context switch routine in the kernel [4].

However, the OS kernel is implemented as C lan-

guage mainly and SPARCv8 as inline assembly. Just

having a traditional Hoare-style program logic for

SPARCv8, which can only make sure the safe execution

of the SPARCv8 program if the initial state satisfies

the precondition, is insufficient. Xu et al. [1] proposed a

program logic for verifying the correctness of OS kernel

implemented in C language with inline assembly, but

they used “abstract assembly primitives” to substitute

the inline assembly in their verification work. As a sup-

plement to their work, we extend our program logic so

1384 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

that it can ensure the contextual refinement relation,

shown in (1), between the implementations and their

corresponding abstract assembly primitives. Here, we

use C, A, and Cas to represent the C language program,

the set of abstract assembly primitives and the imple-

mentations of abstract assembly primitives respectively.

It means Cas refines A under “any context” C:

∀C.C[Cas] ⊆ C[A]. (1)

Here we use “⊆” to represent the refinement relation.

However, if we use the C program as a client code

to call inline assembly code, we need to define the se-

mantics of C-assembly interaction.

Since the goal of this paper is to verify the correct-

ness of the assembly code with respect to the abstract

assembly primitives, we want to avoid the C-assembly

interaction (and leave it as future work). We decom-

pose the OS verification tasks into two steps, as shown

in Fig.2, and focus on S2 only in this paper.

J C[A] KC

(S1) ⊆ ⇐= C = Comp(C)

J C[Ω] KP-SPARCv8

(S2) ⊆ ⇐= ⊢ Cas : Ω

J C[Cas] KSPARCv8

Fig.2. Idea to establish contextual refinement.

The source program of OS kernel C[A], which exe-

cutes under the C language semantics (shown as [[]]C),

is implemented as C language with a set of abstract

assembly primitives A. The compiler (Comp) trans-

lates the C program C to the SPARCv8 code C. As

S1 shows, we assume the compilation ensures the re-

finement between C[A] and C[Ω] that executes un-

der Pseudo-SPARCv8 semantics shown as [[]]P-SPARCv8.

Here, Ω represents the set of abstract assembly prim-

itives in the middle layer. We use distinguished no-

tations to represent the set of abstract assembly primi-

tives in the source and intermediate level, since they ex-

ecute on different program states and have different se-

mantics. The Pseudo-SPARCv8 language C[Ω], which

uses SPARCv8 as client code, is able to call abstract

assembly primitives in Ω. In S2, we verify using our re-

finement logic that the whole SPARCv8 programC[Cas]

executing under the realistically modelled SPARCv8 se-

mantics, represented as [[]]SPARCv8, refines the program

C[Ω] executing under the Pseudo-SPARCv8 semantics.

Finally, we can get [[C[Cas]]]
SPARCv8 ⊆ [[C[A]]]C. In this

work, we focus on S2, and leave S1 as future work.

Our work is based on earlier work on assembly code

verification but makes the following contributions.

• We propose a new program logic which supports

relational reasoning for refinement verification. It en-

sures that a verified SPARCv8 function contextually

refines its corresponding abstract assembly primitive.

Our logic supports all the above features of SPARCv8.

We redefine basic blocks to include the instruction

following the jump or return as the tail of a block,

which models the delayed control transfer. To reason

about delayed writes, we introduce a modal assertion

⊲tsr 7→w, saying that the special register sr will hold

the value w in up to t cycles. We also give logic rules for

save and restore instructions that do register window

rotation.

• In order to support refinement verification, we de-

fine a Pseudo-SPARCv8 language as the language to

implement the high-level specification. It also hides

the details of sophisticated register window mechanism

in SPARCv8 by abstraction, and makes its language

model simpler than realistic SPARCv8. Therefore, it

can provide some convenience to write the abstract as-

sembly primitive and reason in the Pseudo-SPARCv8

level.

• Following SCAP [5], our logic supports modular

reasoning of function calls in a direct style. However,

we use the traditional pre- and post-conditions as func-

tion specifications, instead of the assertion g used in

SCAP. This allows us to reuse existing techniques (e.g.,

Coq tactics) to simplify the verification process. The

logic rules for function call and return are general and

independent of any specific calling convention.

• We give direct-style semantic interpretation for

the logic judgments, based on which we establish

the soundness. This is different from previous work,

which either does syntactic-based soundness proof

(e.g., SCAP [5]) or treats return code pointers as first-

class code pointers and gives CPS-style (continuation-

passing style) semantics. Those approaches for sound-

ness make it difficult to verify the interaction between

the inline assembly and the C code in the kernel, the lat-

ter being verified following a direct-style program logic.

• Context switch of concurrent tasks is an important

component in OS kernels. It is usually implemented as

inline assembly because of the need to access registers

and the stack. We apply our logic and verify that there

is a contextual refinement between a context switch rou-

tine implemented in SPARCv8 and an abstract switch

Jun-Peng Zha et al.: Modular Verification of SPARCv8 Code 1385

primitive.

The program logic and its soundness proof have

been mechanized in Coq. Coq proofs and a comparison

technical report are available 3○.

This paper extends our conference paper in APLAS

2018 [4]. The program logic there can only verify the

partial correctness of SPARCv8 code and we make the

following expansions.

• We propose a new program logic to do relational

reasoning for refinement verification (Subsection 4.4 for

details).

• In order to support refinement verification, this

paper presents a new Pseudo-SPARCv8 language as the

high-level specification language (Subsection 4.1 for de-

tails).

• We also use the new logic to verify the implemen-

tation of a context switch routine, by showing that the

implementation contextually refines an abstract switch

primitive (Section 5 for details).

In the remainder of the paper, we present the pro-

gram model and operational semantics of SPARCv8 in

Section 2. For the clear presentation, we use a simpli-

fied version of our program logic that does not sup-

port refinement verification to demonstrate how our

logic supports the three main features of SPARCv8 in

Section 3, which is the main point of our work and

irrelevant to refinement verification. We present the

Pseudo-SPARCv8 program and the relational program

logic for refinement reasoning in Section 4. We show the

verification of a context switch routine in SPARCv8 in

Section 5. Finally, we discuss more on related work in

Section 6 and conclude the paper in Section 7.

2 SPARCv8 Assembly Language

We introduce the key SPARCv8 instructions, the

model of machine states, and the operational semantics

in this section.

2.1 Language Syntax and States

The machine model and the syntax of SPARCv8 as-

sembly language are defined in Fig.3. Here, we follow

the block-based memory [6] introduced in CompCert to

define the memory in our work. The memory address l

is defined as a pair of its block ID and the offset. Block

IDs (Block) are integers in mathematics presented as Z,

and offsets (Word) are 32-bit integers (called “words”).

The value (Val) is either word w or address l. The whole

program configuration (Prog) P includes the code heap

(CodeHeap) C, the machine state (State) S, and the

program counters pc and npc. The code heap C is a

partial function from labels f to commands c. Labels

are also 32-bit integers, which can be viewed as loca-

tions where the commands are saved in the code heap.

The operand expression (OpExp) o, which is either a

general register r or a word w, and the address expres-

sion (AddrExp) a, which is either an operand expression

or a sum of the values of register r and an operation

expression, are auxiliary definitions used as parame-

ters of commands. Commands (Comm) in SPARCv8

are classified into two categories: 1) the simple instruc-

tions (SimpIns) i, which do sequential operation, e.g.,

arithmetic operation “add”, or memory operations “ld”

(load) and “st” (store), or register window operations

“save” and “restore”, or special register operations

“rd” (read) and “wr” (write), or “nop”, whose exe-

cution changes no program state (the program counters

pc and npc); 2) the control-transfer instructions, e.g.,

call and retl for function call and return, or jmp and

be for unconditional and conditional branch.

The machine state (State) S consists of three parts:

the memory (Mem) M , the register state (Rstate) Q

which is a pair of register file (RegFile) R and frame

(Word) w, f ∈ Int32 (Block) b ∈ Z (Addr) l ∈ Block×Word (Val) v ::=w | l

(Prog) P ::= (C, S, pc, npc) (CodeHeap) C ∈ Word ⇀ Comm

(State) S ::= (M,Q,D) (RState) Q ::= (R, F)

(Mem) M ∈ Addr ⇀ Val (ProgCount) pc, npc ∈ Word

(OpExp) o ::= r | w (AddrExp) a ::= o | r + o

(Comm) c ::= i | call f | jmp a | retl | be f

(SimpIns) i ::= ld a rd | st rs a | nop | add rs o rd | save rs o rd | restore rs o rd
| rd sr rd | wr rs o sr | . . .

(InstrSeq) I ::= i; I | jmp a; i | call f; i; I | retl i | be f; i; I

Fig.3. Machine states and language for SPARCv8 Code [4].

3○https://github.com/jpzha/VeriSparc, Sept. 2020.

1386 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

list (FrameList) F , and the delay buffer (DelayBuff) D.

As defined in Fig.4, R is a partial mapping from reg-

ister names (RegName) to values. Registers include

the general registers r, the processor state registers

(PsrReg) psr and the special registers (SpeReg) sr.

psr contains the integer condition code fields n, z, v and

c, which can be modified by the arithmetic and logical

instructions and used for conditional control-transfer,

and cwp recording the ID of the current register win-

dow. We explain the frame list F and the delay buffer

D below.

Register Windows and Frame List. SPARCv8 pro-

vides 32 general registers that are split into four groups

as global (r0–r7), out (r8–r15), local(r16–r23) and in

(r24–r31) registers. The latter three groups (out, local

and in) form the current register window.

At the entry and exit of functions and traps, one

may need to save and restore some of the general regis-

ters as execution contexts. Instead of saving them into

stacks in memory, SPARCv8 uses multiple register win-

dows to form a circular stack, and does window rota-

tion for efficient context save and restore. As shown in

Fig.5 (the figure taken from “The SPARC Architecture

Manual Version 8” 4○), there are N register windows

(N = 8 here) consisting of 2 × N groups of registers

(each group containing eight registers). The cwp regis-

ter (part of psr) records the ID number of the current

window (cwp = 0 in this example).

(RegFile) R ∈ RegName ⇀ Val (RegName) rn ::= r0 | . . . | r31 | psr | sr

(PsrReg) psr ::= n | z | v | c | cwp (SpeReg) sr ::= wim | Y | asr0 | . . . | asr31

(FrameList) F ::= nil | fm::F (Frame) fm ::= [v0, . . . , v7]

(DelayBuff) D ::= nil | (t, sr, w) ::D (DelayCycle) t ∈ {0, 1, . . . ,X}

Fig.4. Register file, frame list and delaybuffer [4].

w ins

w locals

w outs

w ins

w locals

w outs
w ins

w locals

w outs

w ins

w outs
w locals

w ins

w locals

w outs

w ins

w locals

w ins
w outs

w outs

w locals
w ins

w locals
w outs

cwp

(Current Window)

cwp-1

cwp+1

wim

restore
rett

save
Trap

Fig.5. Register windows [4].

4○The SPARC Architecture Manual Version 8. https://gaisler.com/doc/sparcv8.pdf, Sept. 2020.

Jun-Peng Zha et al.: Modular Verification of SPARCv8 Code 1387

The in and out registers of each window are shared

with its adjacent windows for parameter passing. For

example, the in registers of w0 are the out registers of

w1, and the out registers of w0 are the in registers of

w7. This explains why we need only 2 × N groups of

registers for N windows, while each window consists of

three groups (out, local and in).

To save the context, the save instruction rotates the

window by decrementing the cwp pointer (modulo N)

and w7 becomes the current window. The out registers

of w0 become the in registers of w7. The in and local

registers of w0 become inaccessible. This is like pushing

them onto the circular stack. The restore instruction

does the inverse, which is like a stack pop.

The wim register is used as a bit vector to record

the end of the stack. Each bit in wim corresponds to

a register window. The bit corresponding to the last

available window is set to 1, which means “invalid”.

All the other bits are 0 (i.e., “valid”). When executing

save (and restore), we need to ensure the next win-

dow is valid, in order to avoid the overflow of register

window because of the limitation of the number of win-

dows. We use the assertion win valid(wid, R) defined in

Fig.6 to say the window pointed to by wid is valid, given

the value of wim in R.

We use the frame list F to model the circular stack

consisting of register windows. As defined in Fig.4, a

frame is an array of eight words, modeling a group of

eight registers. F consists of a sequence of frames cor-

responding to all the register windows except the out,

local and in registers in the current window. Then save

saves the local and in registers onto the head of F and

loads the two groups of registers at the “tail” of F to

the local and out registers (and the original out regis-

ters become the in group). The restore instruction

does the inverse. The operations are defined formally

in Fig.6. Here, we use “ ::” for adding an element at the

head of a list, and use “ ·” for appending an element at

the tail of a list.

Delay Buffer. The delay buffer D is a sequence of

delayed writes. Because the wr instruction does not up-

date the target register immediately, we put the write

operation onto the delay buffer. A delayed write is

recorded as a triple consisting of the remaining cycles

t to be delayed, the target special register sr and the

value w to be written. Note that the value of a special

register is restricted to only words, since the special

registers are used to record the state of processors, and

it is impossible to store memory addresses in them.

Instruction Sequences. We use an instruction se-

quence I to model a basic block, i.e., a sequence of

commands ending with a control transfer. As defined

in Fig.3, we require that a delayed control-transfer in-

struction must be followed by a simple instruction i,

because the actual control-transfer occurs after the exe-

cution of i. The end of each instruction sequence can

only be jmp or retl followed by a simple instruction

i. Note that we do not view the call instruction as

out ::= [r8, . . . , r15] local ::= [r16, . . . , r23] in ::= [r24, . . . , r31]

R([ri, . . . , ri+k]) ::= [R(ri), . . . , R(ri+k)]

R{[ri, . . . , ri+7] fm} ::= R{ri v0} . . . {ri+7 v7} where fm = [v0, . . . , v7]

win valid(wid, R) ::= 2wid &R(wim) = 0

where & is the bitwise AND operation.

next cwp(wid) ::= (wid +N − 1)%N prev cwp(wid) ::= (wid + 1)%N

save(R,F) ::=



























(R′, F ′), if w′

id = next cwp(R(cwp)),win valid(w′

id, R),

F = F ′′
·fm1 ·fm2, F ′ = R(local) ::R(in) ::F ′′,

R′′ = R{in R(out), local fm2, out fm1},

R′ = R′′{cwp w′

id},

⊥, if ¬win valid(next cwp(R(cwp)), R).

restore(R,F) ::=



























(R′, F ′), if w′

id = prev cwp(R(cwp)),win valid(w′

id, R),

F = fm1 :: fm2 ::F
′′, F ′ = F ′′

·R(out)·R(local),

R′′ = R{in fm2, local fm1, out R(in)},

R′ = R′′{cwp w′

id},

⊥, if ¬win valid(prev cwp(R(cwp)), R).

Fig.6. Auxiliary definitions for instruction save and restore [4].

1388 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

the end of a basic block, since the callee is expected to

return, following our direct-style semantics for function

calls. We define C[f] to extract an instruction sequence

starting from f in C below.

C[f] =































i; I, if C(f) = i and C[f + 4] = I,

c; i, if c = C(f) and c = jmp a or retl
and C(f + 4) = i,

c; i; I, if c = C(f) and c = call f or be f

and C(f + 4) = i and C[f + 8] = I,

undefined, otherwise.

2.2 Operational Semantics

The operational semantics is taken from Wang et

al. [7], but we use a block-based memory model and

omit features like interrupts and traps. We show the

selected rules in Fig.7. The program transition re-

lation (C, S′, pc, npc) ::⇒ (C, S′, pc′, npc′) is defined

in Fig.7(a). Before the execution of the instruction

pointed by pc, the delayed writes in D with 0 delay

cycles are executed first. The execution of the delayed

writes is defined in the form of (R,D)⇉ (R′, D′) below.

(R,D)⇉ (R′,D′)
C ⊢ ((M, (R′, F),D′), pc, npc) ◦−−→ ((M ′, (R′′, F ′),D′′), pc′, npc′)

(C, (M, (R, F),D), pc, npc) ::==⇒ (C, (M ′, (R′′, F ′), D′′), pc′, npc′)

(a)

C(pc) = i (M, (R, F),D) •
i

−−→ (M ′, (R′, F ′), D′)

C ⊢ ((M, (R, F), D), pc, npc) ◦−−→ ((M ′, (R′, F ′), D′), npc, npc + 4)

C(pc) = jmp a JaKR = f

C ⊢ ((M, (R, F),D), pc, npc) ◦−−→ ((M, (R, F), D), npc, f)

C(pc) = call f r15 ∈ dom(R)

C ⊢ ((M, (R, F),D), pc, npc) ◦−−→ ((M, (R{r15 pc}, F),D), npc, f)

C(pc) = retl R(r15) = f

C ⊢ ((M, (R, F),D), pc, npc) ◦−−→ ((M, (R, F), D), npc, f+8)

C(pc) = be f R(z) 6= 0

C ⊢ ((M, (R, F),D), pc, npc) ◦−−→ ((M, (R, F), D), npc, f)

C(pc) = be f R(z) = 0

C ⊢ ((M, (R, F), D), pc, npc) ◦−−→ ((M, (R, F),D), npc, npc+4)

(b)

(M,R)
i
−→ (M ′, R′)

(M, (R, F),D) •
i

−−→ (M ′, (R′, F),D)

R(rs) = w1 JoKR = w2 w = w1⊕w2

sr ∈ dom(R) D′ = set delay(sr, w,D)

(M, (R, F),D) •
wr rs o sr
−−−−−−→ (M, (R, F),D′)

save(R, F) = (R′, F ′) JoKR = v v′ = R(rs)+v

(M, (R, F),D) •
save rs o rd−−−−−−−−→ (M, (R{rd v′}, F ′), D)

restore(R, F) = (R′, F ′) JoKR = v v′ = R(rs)+v

(M, (R, F), D) •
restore rs o rd−−−−−−−−−−→ (M, (R{rs v′}, F ′), D)

(c)

R(sr) = w rd ∈ dom(R)

(M,R)
rd sr r

d−−−−−→ (M,R{rd w})

R(rs) = v1 JoK
R

= v2 v = v1+v2 rd ∈ dom(R)

(M,R)
add rs o r

d−−−−−−−→ (M,R{rd v})

JaK
R

= l M(l) = v′
rd ∈ dom(R)

(M,R)
ld a r

d−−−−→ (M,R{rd v′})

(d)

JoKR ::=















R(r), if o = r,

w, if o = w,
−4 096 6 w 6 4 095,

undefined, otherwise.

JaKR ::=















JoKR, if a = o,

v1+v2, if a = r+o, R(r)=v1
and JoKR = v2,

undefined, otherwise.

(e)

Fig.7. Selected operational semantics rules [4]. (a) Program transition. (b) Control transfer instruction transitions. (c) save, restore
and wr instruction transitions. (d) Simple instruction transitions. (e) Expression semantics.

13718
备注
此处为 S，不是 S'

13718
备注
此处，C 和 S 的字体有误，都是斜体。与箭头前面的一样。

Jun-Peng Zha et al.: Modular Verification of SPARCv8 Code 1389

(R, nil)⇉ (R, nil)

(R,D)⇉ (R′, D′)

(R, (t+1, sr, w) ::D)⇉ (R′, (t, sr, w) ::D′)

(R,D)⇉ (R′, D′) sr ∈ dom(R)

(R, (0, sr, w) ::D)⇉ (R′{sr w}, D′)

(R,D)⇉ (R′, D′) sr 6∈ dom(R)

(R, (0, sr, w) ::D)⇉ (R′, D′)

Note that the write of sr has no effect if sr is not in

the domain of R. Since R is defined as a partial map,

we can prove the following lemma.

Lemma 1 [4]. (R,D) ⇉ (R′, D′) and R = R1 ⊎

R2, if and only if there exist R′
1 and R′

2, such that

(R1, D) ⇉ (R′
1, D

′), (R2, D) ⇉ (R′
2, D

′), and R′ =

R′
1 ⊎R′

2.

Here the disjoint union R1⊎R2 represents the union

of R1 and R2 if they have disjoint domains, and un-

defined otherwise. This lemma is important to give

sound semantics to delay buffer related assertions, as

discussed in Section 3.

The transition steps for individual instructions are

classified into three categories: the control transfer

steps (⊢ ◦−−→), the steps for save, restore and

wr instructions (•−−→), and the steps for other

simple instructions (−−→). The corresponding step

transition relations are defined inductively in Fig.7(b)–

Fig.7(d) respectively.

Note that, after the control-transfer instructions, pc

is set to npc and npc contains the target code pointer.

This explains the one cycle delay for the control trans-

fer. The call instruction saves pc into register r15,

while retl uses r15+8 as the return address (which

is the address for the second instruction following the

call). The conditional branch be f jumps to f (af-

ter one-cycle delay) if the value in the register z is not

0. Evaluation of expressions a and o are defined in

Fig.7(e). Here, we define the sum of two values v1 and

v2 below. The result of v1+v2 is legal, if both of v1 and

v2 are words (Int32), or v1 is an address and v2 is an

offset. The offset is a word, which acts as an immediate

value in the calculation of address.

v1+v2 ::=







w1 +w2, if v1 = w1, and v2 = w2,

(b, w1 +w2), if v1 = (b, w1), and v2 = w2,

undefined, otherwise.

wr wants to save the bitwise exclusive OR of the

operands into the special register sr, but it puts the

write into the delay buffer D instead of updating R im-

mediately. The operation set delay(sr, w,D) is defined

below:

set delay(sr, w,D) ::=(X, sr, w) ::D,

where X (0 6 X 6 3) is a predefined system parameter

for the delay cycle.

The save and restore instructions rotate the reg-

ister windows and update the register file. Their ope-

rations over F and R are defined in Fig.6.

3 Program Logic

In this section, we use a simplified version of our

program logic that does not support refinement verifi-

cation to present how our logic handles the features of

SPARCv8. The relational program logic for refinement

reasoning will be introduced in Section 4.

3.1 Assertions

We define the syntax of assertions (Asrt) in Fig.8,

and their semantics in Fig.9. We extend separation

logic assertions with specifications of delay buffers and

register windows. Registers are like variables in separa-

tion logic, but treated as resources. The assertion emp

says that the memory and the register file are both

empty. l 7→ v specifies a singleton memory cell with

value v stored in address l. rn 7→ v says that rn is

the only register in the register file and it contains the

value v. Also rn is not in the delay buffer. Separat-

ing conjunction p ∗ q has the standard semantics as in

separation logic [8].

(Asrt) p, q ::= emp | l 7→v | rn 7→v | ⊲t sr 7→w | p↓
| cwp 7→ Lwid, F M | p ∧ q | p ∨ q | p ∗ q
| a=a v | o = v | ∀x. p | ∃x. q | . . .

Fig.8. Syntax of assertions [4].

The assertion ⊲tsr 7→w describes a delayed write in

the delay buffer D. It describes the uncertainty of sr’s

value in R, which is unknown for now but will become

w in up to t+1 cycles. We use ⇉k to represent

the k-step execution of the delayed writes in D. It also

requires that there be at most one delayed write for

a specific special register sr in D (i.e., noDup(sr, D)).

This prevents more than one delayed write to the same

register within four instruction cycles, which practically

have no restrictions on programming. By the semantics

13718
备注
抱歉，此处是我们的一个 typo。不应该是"noDup(sr, D)" 而是 "noDup(D, sr)",即：Fig.9 中的定义。还需麻烦更正，谢谢

1390 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

S |=emp ::= S.M = ∅ ∧ S.Q.R = ∅
S |= l 7→ v ::= S.M = {l v} ∧ S.Q.R = ∅
S |=rn 7→v ::= S.Q.R = {rn v} ∧ rn /∈ dom(S.D) ∧ S.M = ∅
S |=⊲tsr 7→w ::= ∃k,R′,D′. 0 6 k 6 t+1 ∧ (R,D)⇉k (R′,D′)∧

((M, (R′, F), D′) |=sr 7→w) ∧ noDup(D, sr)
where S = (M, (R, F), D)

S |=p↓ ::= ∃R′,D′. ((M, (R′, F),D′) |=p) ∧ (R′,D′)⇉ (R,D)
where S = (M, (R, F), D)

S |=cwp 7→ Lwid, F M ::= (S |= cwp 7→wid) ∧ ∃F ′. F ·F ′ = S.Q.F
S |=a=a v ::= JaKS.Q.R = v ∧ word align(v)

S |=o=v ::= JoKS.Q.R = v

S |=p1 ∗ p2 ::= ∃S1, S2. S1 |= p1 ∧ S2 |= p2 ∧ S = S1 ⊎ S2

M1⊥M2 ::= (dom(M1) ∩ dom(M2)) = ∅ R1⊥R2 ::= (dom(R1) ∩ dom(R2)) = ∅

S1⊎S2 ::=







(M1∪M2, (R1∪R2, F),D), if M1⊥M2 ∧ R1⊥R2∧
S1=(M1, (R1, F),D) ∧ S2=(M2, (R2, F),D),

undefined, otherwise.

dom(D) ::=

{

{sr} ∪ dom(D′), if D = (t, sr, w) ::D′,

∅, if D = nil.

noDup(D, sr) ::=







sr 6∈ dom(D′), if D = (t, sr, w) ::D′,

sr 6= sr′ ∧ noDup(D′, sr), if D = (t, sr′, w) ::D′,

True, if D = nil.

Fig.9. Semantics of assertions [4].

we have (p ⇒ q means for any S, if S |= p holds, then

S |=q holds):

sr 7→w ⇒ ⊲tsr 7→w,

⊲tsr 7→w ⇒ ⊲t+ksr 7→w.

The assertion p ↓ allows us to reduce the uncer-

tainty by executing one step of the delayed writes. It

specifies states reachable after executing one step of de-

layed writes from those states satisfying p. Therefore

we know:

(⊲0sr 7→w)↓⇒ sr 7→w,

(⊲t+1sr 7→w)↓⇒ ⊲tsr 7→w.

Also it is easy to see that if p syntactically does not con-

tain sub-terms in the form of⊲tsr 7→w, then (p↓) ⇔ p.

The following lemma shows ()↓ is distributive over

separating conjunction.

Lemma 2 [4]. (p ∗ q)↓⇔ (p↓) ∗ (q↓) .

The lemma can be proved following Lemma 1. We

present the proof of Lemma 2 below.

Proof. “⇒”: if (M, (R,F), D) |= (p ∗ q)↓, then

(M, (R,F), D) |= (p)↓ ∗(q)↓. We first get there ex-

ist R′, D′, M1, M2, R′
1 and R′

2 such that (R1 ⊎ R2

represents the union of R1 and R2 if they have dis-

joint domains, and M1 ⊎ M2 has the same meaning):

(A1) (R′, D′) ⇉ (R,D); (A2) R′ = R′
1 ⊎ R′

2; (A3)

M = M1 ⊎ M2; (A4) (M1, (R
′
1, F), D′) |= p; (A5)

(M2, (R
′
2, F), D′) |= q. By applying Lemma 1 on (A.1),

we get that there exist R1 and R2, where R = R1 ⊎R2,

such that: (R′
1, D

′)⇉ (R1, D), (R′
2, D

′)⇉ (R2, D).

Thus, we get (M1, (R1, F), D) |= p↓;

(M2, (R2, F), D) |= q↓. Finally, we prove that

(M, (R,F), D) |=(p↓) ∗ (q↓) holds.

“⇐”: if (M, (R,F), D) |= (p↓) ∗ (q↓), then

(M, (R,F), D) |= (p ∗ q)↓. We first get there ex-

ist M1, M2, R′
1, R′

2, R1, R2, D′
1 and D′

2, where

R = R1 ⊎ R2, such that: (B1) (R′
1, D

′
1) ⇉ (R1, D),

(R′
2, D

′
2) ⇉ (R2, D); (B2) (M1, (R

′
1, F), D′

1) |= p; (B3)

(M2, (R
′
2, F), D′

2) |=q.

By the definition of the step of the delayed writes,

we can prove thatD′
1 = D′

2. LetD
′ = D′

1 = D′
2. By ap-

plying Lemma 1 on (B1), we get there exists R′, where

R′ = R′
1 ⊎ R′

2, such that (R′, D′) ⇉ (R,D). Thus, we

prove that (M, (R,F), D) |=(p ∗ q)↓ holds. �

We use cwp 7→ (|wid, F |) to describe the pointer cwp

of the current register window and the frame list as a

circular stack. Note that F is just a prefix of the frame

list, since usually we do not need to know contents of

the full list. Here we use F ·F ′ to represent the con-

catenation of lists F and F ′. Therefore we have cwp 7→

(|wid, F · F ′|) ⇒ cwp 7→ (|wid, F |).

The assertions a=a v and o= v describe the value

of a and o respectively. They are intuitionistic asser-

tions. Since a is used as an address, we also require it

to be properly aligned on a 4-byte boundary. We define

word align to represent this restriction below:

word align(v) ::=∃w. (v = w ∨ v = (, w)) ∧ w%4 = 0.

The result of the address expression a may be a word,

if it is a pointer in code heap, or a memory address if

Jun-Peng Zha et al.: Modular Verification of SPARCv8 Code 1391

it is a location of memory.

3.2 Inference Rules

The code specification θ and the code heap specifi-

cation Ψ are defined below.

(valList) ι ∈ list value (pAsrt) fp, fq ∈ valList → Asrt
(CdSpec) θ ::= (fp, fq) (CdHpSpec) Ψ ::= {f θ}∗

The code heap specification Ψ maps the code la-

bels for basic blocks to their specifications θ, which is

a pair of pre- and post-conditions. Instead of using

normal assertions, the pre- and post-conditions are as-

sertions parameterized over a list of values ι. They play

the role of auxiliary variables—feeding the pre- and the

post-conditions with the same ι allows us to establish

the relationship of states specified in the pre- and post-

conditions.

Although we assign a specification θ to each basic

block, the post-condition does not specify the states

reached at the end of the block. Instead, it specifies

the condition that needs to be specified in the future

when the “current function” returns. This follows the

idea developed in SCAP [5], but we use the standard

unary state assertion instead of the binary state asser-

tions used in SCAP so that existing proof techniques

(such as Coq tactics) for standard Hoare-triples can be

applied to simplify the verification process.

We give a simple example in Fig.10 to show a speci-

fication for a function, which simply sums the values of

the registers %i0, %i1 and %i2 and writes the result

into register %l7. The specification (fp, fq) says that,

when provided with the same lv as argument, the func-

tion preserves the value of %i0, %i1 and %i2, %l7 in

the beginning contains any value and at the end con-

tains the sum of %i0, %i1 and %i2, and the function

also preserves the value of r15, which it uses as the re-

turn address. To verify the function, we need to prove

that it satisfies (fp lv, fq lv) for all lv. Here, lv[1] and

lv[2] cannot be a memory address, because a value plus

a memory address is illegal. lv[3] should also be a word,

because it is a return code pointer whose type is word.

Fig.11 shows selected inference rules in our logic.

Our logic divides the proof work into three layers.

We define the well-formed code heap in the form of

(⊢ C : Ψ) to verify the code heap C, the well-formed

instruction sequence in the form of (Ψ ⊢ {(p, q)} f : I)

to verify the instruction sequence I starting from f in

code heap, and well-formed instruction in the form of

(⊢ {p} i{q}) to verify the single simple instruction i.

− {(fp, fq)}
add %i0, %i1, %l7
add %l7, %i2, %l7
retl

nop

fp ::= λ lv. ((%i0 7→ lv[0]) ∗ (%i1 7→ lv[1]) ∗ (%i2 7→ lv[2])
∗%l7 7→ ∗ (r15 7→ lv[3]))
∧(lv[1], lv[2], lv[3] ∈ Word)

fq ::= λ lv. (%i0 7→ lv[0]) ∗ (%i1 7→ lv[1]) ∗ (%i2 7→ lv[2])
∗(%l7 7→ lv[0]+lv[1]+lv[2]) ∗ (r15 7→ lv[3])

Fig.10. Example for function specification [4].

The top rule CDHP verifies the code heap C. It

requires that every basic block specified in Ψ can be

verified with respect to the specification, with any argu-

ment ι used to instantiate the pre- and post-conditions.

The SEQ rule is applied when meeting an instruc-

tion sequence starting with a simple instruction i.

The instruction i is verified by the corresponding well-

formed instruction rules, with the precondition p↓ and

some post-condition p′. We use p↓ because there is an

implicit step executing delayed writes before executing

every instruction. The post-condition p′ for i is then

used as the precondition to verify the remaining part of

the instruction sequence.

Delayed Control Transfers. We distinguish the jmp

and call instructions — the former makes an “intra-

function” control transfer, while the latter makes func-

tion calls. The JMP rule requires that the target ad-

dress is a valid one specified in Ψ. Starting from the

precondition p, after executing the instruction i fol-

lowing JMP and the corresponding delayed writes, the

post-condition p′ of i should satisfy the precondition

of the target instruction sequence, with some instanti-

ation ι of the logical variables and a frame assertion pr.

Since the target instruction sequence of jmp is in the

same function as the jmp instruction itself, the post-

condition fq specified at the target address (with the

same instantiation ι of the logical variables and the

frame assertion pr) should meet the post-condition q

of the current function. As we explained before, the

post-condition q does not specify the states reached at

the end of the instruction sequence (which are specified

by p′ instead).

The CALL rule is similar to the JMP rule in that it

also requires the post-condition p2 of the instruction i

following the call satisfy the precondition of the tar-

get instruction sequence, with some instantiation ι of

the logical variables and a frame assertion pr. Here we

need to record that the code label f is saved in r15 by

the call instruction. When the callee returns, its post-

condition fq (with the same instantiation of auxiliary

JCST
附注
右侧的图超边界了？

1392 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

⊢ C : Ψ (Well-Formed Code Heap)

for all f ∈ dom(Ψ), ι : Ψ(f) = (fp, fq) Ψ ⊢ {(fp ι, fq ι)} f : C[f]

⊢ C : Ψ
(CDHP)

Ψ ⊢ {(p, q)} f : I (Well-Formed Instruction Sequences)

⊢ {p↓} i {p′} Ψ ⊢ {(p′, q)} f+4 : I

Ψ ⊢ {(p, q)} f : i; I
(SEQ)

p↓⇒ (a=a f
′) f′ ∈ dom(Ψ) Ψ(f′) = (fp, fq)

⊢ {p↓↓} i {p′} ∃ι, pr . (p′ ⇒ fp ι ∗ pr) ∧ (fq ι ∗ pr ⇒ q)

Ψ ⊢ {(p, q)} f : jmp a; i
(JMP)

f′ ∈ dom(Ψ) Ψ(f′) = (fp, fq) Ψ ⊢ {(p′, q)} f+8 : I

p↓⇒ (r15 7→) ∗ p1 ⊢ {(r15 7→f ∗ p1)↓} i {p2}

∃ι, pr. (p2 ⇒ fp ι ∗ pr) ∧ (fq ι ∗ pr ⇒ p′) ∧ (fq ι ⇒ r15=f)

Ψ ⊢ {(p, q)} f : call f′; i; I
(CALL)

p↓↓⇒ (r15 7→f′) ∗ p1 ⊢ {p1} i {p2} (r15 7→f′) ∗ p2 ⇒ q

Ψ ⊢ {(p, q)} f : retl; i
(RETL)

p↓⇒ (z 7→w) ∗ true f′ ∈ dom(Ψ) Ψ(f′) = (fp, fq)

⊢ {p↓↓} i {p′} Ψ ⊢ {(p′ ∧w = 0, q)} f+8 : I

∃ι, pr. ((p′ ∧ w 6= 0) ⇒ fp ι ∗ pr) ∧ (fq ι ∗ pr ⇒ q)

Ψ ⊢ {(p, q)} f : be f′; i; I
(BE)

⊢ {p} i {q} (Well-Formed Instructions)

sr 7→ ∗ p ⇒ (rs = w1 ∧ o = w2)

⊢ {sr 7→ ∗ p} wr rs o sr {(⊲3sr 7→ (w1 ⊕ w2)) ∗ p}
(WR)

⊢ {sr 7→w ∗ rd 7→ } rd sr rd {sr 7→w ∗ rd 7→w}
(RD)

p ⇒ (rs = v1 ∧ o = v2) w′

id
= next cwp(wid) w & 2w

′

id = 0 v = v1+v2

p ⇒ (cwp 7→ Lwid, F · · M) ∗ (out 7→ fmo) ∗ (local 7→ fml) ∗ (in 7→ fmi) ∗ p1
(

cwp 7→ Lw′

id
, fml :: fmi ::F M

)

∗ (out 7→) ∗ (local 7→) ∗ (in 7→ fmo) ∗ p1 ⇒ rd 7→ ∗ p2

⊢ {(wim 7→w) ∗ p} save rs o rd {(wim 7→w) ∗ (rd 7→v) ∗ p2}
(SAVE)

where [ri, . . . , ri+7] 7→ [w0, . . . , w7] ::= ri 7→w0 ∗ · · · ∗ ri+7 7→w7

and out, local and in are defined in Fig.6.

p ⇒ (rs = v1 ∧ o = v2) w′

id
= prev cwp(wid) w & 2w

′

id = 0 v = v1+v2

p ⇒ (cwp 7→ Lwid, fm1 :: fm2 ::F M) ∗ (out 7→) ∗ (local 7→) ∗ (in 7→ fmi) ∗ p1
(

cwp 7→ Lw′

id
, F · · M

)

∗ (out 7→ fmi) ∗ (local 7→ fm1) ∗ (in 7→ fm2) ∗ p1 ⇒ rd 7→ ∗ p2

⊢ {(wim 7→w) ∗ p} restore rs o rd {(wim 7→w) ∗ (rd 7→v) ∗ p2}
(RESTORE)

Fig.11. Selected inference rules [4].

variables ι) needs to ensure r15 still contains f, so that

the callee returns to the correct address. Also the fq

with the frame pr needs to satisfy the precondition p′

for the remaining instruction sequences of the caller.

The RETL rule simply requires that the post-

condition q hold at the end of the instruction i following

retl. Also i cannot touch the register r15; therefore

r15 specified in p must be the same as in q. Since at

the calling point we have already required that the post-

condition of the callee guarantees r15 contain the cor-

rect return address, we know r15 contains the correct

value before retl.

The BE rule checks the “current” value of the regis-

ter z and decides whether the branch will be taken after

executing the following instruction i. If z is not zero,

the branch is taken and it does the same things as the

JMP rule; otherwise, the branch is not taken and the

remaining instruction sequence I should be well-formed.

Delayed Writes and Register Windows. The bottom

layer of our logic is for well-formed instructions. The

WR rule requires the ownership of the target register

sr in the precondition (sr 7→). Also it implies there

is no delayed write to sr in the delay buffer (see the

semantics defined in Fig.9). At the end of the delayed

Jun-Peng Zha et al.: Modular Verification of SPARCv8 Code 1393

write, we use ⊲3sr 7→w1 ⊕ w2 to indicate the new value

will be ready in up to three cycles. Since the maximum

delay cycle X cannot be bigger than 3 and the value

of X may vary in different systems, programmers usu-

ally take a conservative approach to assume X = 3 for

the portability of code. Our rule reflects this conserva-

tive view. The RD rule says the special register can be

read only if it is not in the delay buffer. The SAVE and

RESTORE rules reflect the save and recovery of the exe-

cution contexts, respectively, which is consistent with

the operational semantics of the save and restore in-

structions given in Figs.6 and 7 respectively.

4 Refinement Verification of SPARCv8

In this section, we present our relational program

logic for refinement verification of SPARCv8 code 5○.

As an extension of our conference paper, it consists of

the following work.

• We define a new Pseudo-SPARCv8 language as

the high-level specification language in Subsection 4.1.

•We make some modifications to the SPARCv8 lan-

guage defined in Section 2 and let it act as the low-level

language in our refinement verification. We present our

low-level SPARCv8 language and the modifications in

Subsection 4.2.

• We define the correctness of abstract assembly

primitives in Subsection 4.3, which is formulated as

“contextual refinement” between the implementations

and their corresponding abstract assembly primitives.

• We present a new program logic to do refinement

verification in Subsection 4.4.

• We show that our new program logic is sound

in Subsection 4.5. The semantics of judgements, diffe-

rent from the previous work in our conference paper [4]

which only ensures the partial correctness of verified

programs, is defined as simulation relations between the

low- and high-level programs, which guarantees contex-

tual refinement.

4.1 High-Level Pseudo-SPARCv8 Language

The Pseudo-SPARCv8 language contains two parts:

the SPARCv8 code as the client and the set of abstract

assembly primitives. Here, the execution of the client

SPARCv8 code is required to preserve a restriction be-

tween register windows and stacks in memory, shown

in Fig.12(a) (cwp points to the current window and wim

marks the invalid window, and the details of overlap-

ping of adjacent windows are omitted in the figure).

Register Windows

Stack in Memory

Abstract

High-Level
Frame List

(b)(a)

cwp

wim

Fig.12. Abstraction of context management. (a) Reigster win-
dows and stack in memory. (b) High-level frame list.

During the execution of the SPARCv8 program,

parts of previous procedures’ contexts (in Fig.12(a)) are

saved in register windows, and the others (the dark gray

part in Fig.12(a)) are stored in the stack in memory,

since the number of windows is limited. The restriction

is that the stack pointer (%sp) of each procedure, in-

cluding the current and previous ones, whose context

is saved in register windows currently, should point to

the top of its stack frame (shown as the thick arrow in

Fig.12(a)), so that the contexts in these windows can be

stored correctly in memory when needed. For instance,

the context switch routine will check whether the pre-

vious window is valid (in clockwise direction), and use

the restore instruction to set it as the current one and

save its contents into the stack (in memory) until the

previous one (filled with east north lines in Fig.12(a))

is invalid. The executions of client code are required to

preserve such a restriction. Otherwise, some SPARCv8

functions, e.g., context switch routine, whose execution

stores the contexts saved in register windows into stacks

in memory, cannot be verified if it is unclear where to

save the contents of some windows. We do the following

when defining the Pseudo-SPARCv8 program to make

the client code execution preserve such a restriction.

• In order to ensure that the stack pointer (%sp) al-

ways points to the top of its stack frame, we require that

each instruction, e.g., add and ld, whose execution does

not operate register windows, is prohibited to modify

%sp. As for the save and restore, we restrict them

to be used in specific forms. We define “Psave w” as a

macro of “save %sp,−w,%sp”, whose execution gene-

rates a new %sp pointing to the stack frame size w

allocated newly for the next window. We also define

5○We give more details about the language definition and the soundness proof in the Coq implementation and the technical report,
which is available at https://github.com/jpzha/VeriSparc, Sept. 2020.

6○In SPARCv8, %g0 is always 0, and usually used as a parameter when instructions do not require a specific parameter.

1394 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

“Prestore” as a macro of “restore%g0,%g0,%g0”
6○,

whose execution just restores the previous window and

does not modify the value of any register in the previous

window. The original save and restore instructions

have no semantics in the high-level client code.

• The special registers in SPARCv8 usually play

specific roles and modifying them should be done care-

fully. For example, wim marks which window is invalid.

If we change its value shown in Fig.12(a) to mark

another window invalid, as shown in Fig.13, and call

context switch routine to save contents of the previous

windows into memory until the invalid one at this mo-

ment, a problem will arise since we do not know where

to save the contents of window marked invalid originally

(filled with dots in Fig.13). Therefore, we forbid the

client to modify special registers and give no semantics

to instruction wr in high-level client code. Modifying

them is hidden in the implementations of abstract as-

sembly primitives in the low level. And the delay buffer

can be omitted in high-level program state.

Stack in Memory

Register Windows

cwp

wim

Fig.13. Problem of modifying wim arbitrary.

• As shown in Fig.12, we find that we can abstract

the register windows and the stack in memory storing

contexts into a list (shown in Fig.12(b)). After this

abstraction, we do not need to care about whether con-

texts are saved in register windows or memory, and do

not need to describe the contents of the windows unused

(the windows in white in Fig.12(a), but excluding the

current one pointed by cwp) in Pseudo-SPARCv8. The

cwp register is no longer needed in Pseudo-SPARCv8

since the register windows are abstracted away. The

low-level program in our work does not use such ab-

straction, since the low-level program should be realisti-

cally modelled, and the implementations of some prim-

itives need to know the existence of register windows,

e.g., the context switch routine that saves the contents

of register windows into stacks (in memory).

We define the syntax of the high-level Pseudo-

SPARCv8 language in Fig.14. The code (HCode) Π

includes the code heap C and the set of abstract prim-

itives (PrimSet) Ω, which is a partial mapping from la-

bels to abstract assembly primitives. The code heap C

in Π acts as the client to call abstract assembly prim-

itives. The abstract assembly primitive (Prim) Υ is

defined as a relation that takes a list of values as ar-

guments and maps a high-level program state (defined

in Fig.15) to another. We add three pseudo instruc-

tions in simple instruction (SimpIns). The Psave w and

Prestore restrict the save and restore instructions to

be used in the specific form as mentioned before. We

also introduce print r, whose execution outputs the

value v in general register r and generates a message

out(v) as an observable event. The high-level message

(HMsg) α can be either an empty message τ , or an

output out(v), or a call(f, v) meaning to call a primi-

tive labelled f with arguments v.

The machine states (HState) of Pseudo-SPARCv8

are defined in Fig.15. The high-level program P

(HCode) Π ::= (C,Ω) (CodeHeap) C ∈ Word ⇀ Comm

(PrimSet) Ω ::= {f1 Υ1, . . . , fn Υn} (Prim) Υ ∈ List Val → HState → HState → Prop

(Comm) c ::= i | call f | jmp a | retl | be f

(SimpIns) i ::= Psave w | Prestore | print r | ld a rd | st rs a | add rs o rd | rd sr rd | wr rs o sr

| save rs o rd | restore rs o rd | . . .

(HMsg) α ::= τ | out(v) | call(f, v)

Fig.14. Syntax of Pseudo-SPARCv8 code.

(HProg) P ::= (Π, S) (HState) S ::= (T, t,K,M) (ThrdPool) T ::= {t K}∗

(Tid) t ∈ Z (ThrdLcSt) K ::= (Q, pc, npc) (HRstate) Q ::= (R, F)

(HRegFile) R ∈ HRegName → Val (HRegName) r̂n ::= r0 | . . . | r31 | n | z | c | v

(HFrmList) F ::= nil | (fm1, fm2) ::F (HFrame) fm ::= [v0, . . . , v7]

Fig.15. Machine states for Pseudo-SPARCv8 code.

Jun-Peng Zha et al.: Modular Verification of SPARCv8 Code 1395

(HProg) is a pair of the high-level code Π and the high-

level state S. The high-level state S is a tuple including:

the thread pool (ThrdPool) T , the current thread ID

(Tid) t, the thread local state (ThrdLcSt) K of the cur-

rent thread, and the memory (Mem) M .

Thread Local State. The thread local state K is a

triple of high-level register state (HRstate) Q, and pro-

gram counters pc and npc. The high-level register state

Q consists of the high-level register file (HRegFile) R,

and the high-level frame list (HFrmList) F, which is

the abstraction of the register windows and the mem-

ory storing contexts in the low level. r̂n is the high-level

register names (HRegName), where the cwp register is

omitted as introduced before and we also omit special

registers for simplicity, because we forbid the high-level

client code to modify them 7○. The high-level frame list

F is a list of pairs (fm1, fm2), which is used to save the

contexts (local and in registers) fm1 and fm2 of previous

procedures. Then, we define the switch primitive as an

instantiation of Υ below.

switch ::=
λv, S, S′. ∃ t′. M(TaskNew)=(t′, 0) ∧ T (t′)=(Q′, pc′, npc′)

∧T ′ = T{t (Q, pc, npc)} ∧ t 6= t′ ∧ v = nil,

where S = (T, t, (Q, pc, npc),M),
S′ = (T ′, t′, (Q′, f+8, f+12),M), f = Q′.R(r15).

The switch primitive takes no arguments (v = nil), and

changes the identifier of the current thread according

to the value in the location TaskNew. We use parame-

ters S and S′ to represent the machine states before and

after the execution of switch respectively.

Operational Semantics in High Level. The oper-

ational semantics for Pseudo-SPARCv8 is defined in

Fig.16. The high-level program transition relation

(Π, S) :
α

=⇒(Π, S′) is defined in Fig.16(a). In each

step, the program may either execute the instruction

pointed by pc and generate empty message τ or an out-

put out(v), or call an abstract assembly primitive in the

primitive set. When calling an abstract assembly primi-

tive, a message call(f, v) will be generated. It means

that we hope to call the abstract assembly primitive

labelled f with the arguments v (args(Q,M, v), whose

definition is omitted here, means getting the arguments

v from Q and M).

The thread local step is defined in Fig.16(b).

The step for simple instruction i is represented as

“exec(i, ,)”. We show the state transition rela-

tion for pseudo instructions Psave w and Prestore in

Fig.16(c). Supposing the current register state Q is

(R,F), the execution of Psave w will save the local and

in registers into the high-level frame list F. It also allo-

cates a new block b of size 64-byte to w bytes as a new

stack frame in memory (shown as alloc(M, b, 64, w) =

M ′). The reason why it starts from 64-byte is that

the 0–64 bytes (16 words) in a stack frame are usu-

ally reserved to save the context in window (local and

in registers) by convention, and this part of memory is

abstracted away in the Pseudo-SPARCv8 program as

we have explained and shown in Fig.12. Prestore does

the reverse, freeing the block of the current stack frame

(shown as free(b,M) = M ′), and restoring the context

of the previous procedure saved in F.

4.2 Low-Level SPARCv8 Program

The global program transition of the low-level

SPARCv8 program is defined as the following form.

(R,D)⇉ (R′, D′)

C ⊢ ((M, (R′, F), D′), pc, npc) ◦
τ/out(v)
−−−−−→ ((M ′, (R′′, F ′), D′′), pc′, npc′)

(C, (M, (R,F), D), pc, npc) ::
τ/out(v)
=====⇒ (C, (M ′, (R′′, F ′), D′′), pc′, npc′)

The low-level SPARCv8 program is slightly different

from the SPARCv8 program defined in Section 2.

1) The low-level SPARCv8 program uses the in-

structions defined in Fig.14. It means that we need

to give semantics to the pseudo instructions Psave,

Prestore and print in the low-level SPARCv8 pro-

gram. Since Psave and Prestore are simply special

forms of save and restore as explained, and print is

a primitive responsible for generating observable events,

defining their semantics is not a challenge and the trans-

lation of programs in this modified language into ones

in the standard SPARCv8 language is trivial.

2) The program transition defined in Section 2 does

not generate observable events. Here, since we want to

support refinement verification and use the event trace

refinement [9], each step of the program generates either

an empty message τ , or an output out(v) produced by

print.

7○There is no problem to reserve special registers in the high-level register file and permit the high-level client code to read them.

1396 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Π = (C,Ω) C
 (K,M) ◦
τ

−−→ (K′,M ′)

(Π, (T, t,K,M)) :
τ

==⇒ (Π, (T, t,K′,M ′))

Π = (C,Ω) C
 (K,M) ◦
out(v)
−−−−→ (K′,M)

(Π, (T, t,K,M)) :
out(v)
====⇒ (Π, (T, t,K′,M))

Π = (C,Ω) C
 (K,M) ◦
call(f,v)
−−−−−→ (K′,M) Ω(f) = Υ

Υ(v)(T, t,K′,M)(T ′, t′,K′′,M ′)

(Π, (T, t,K,M)) :
τ

==⇒ (Π, (T ′, t′,K′′,M ′))

(a)

C(pc) = i exec(i, (Q,M), (Q′,M ′))

C
 ((Q, pc, npc),M) ◦
τ

−−→ ((Q′, npc, npc + 4),M ′)

C(pc) = call f r15 ∈ dom(R)

C
 (((R, F), pc, npc),M) ◦
τ

−−→ (((R{r15 pc}, F), npc, f),M)

C(pc) = retl R(r15) = f

C
 (((R, F), pc, npc),M) ◦
τ

−−→ (((R, F), npc, f + 8),M)

C(pc) = print r R(r) = v

C
 (((R, F), pc, npc),M) ◦
out(v)
−−−−→ (((R, F), npc, npc + 4),M)

pc /∈ dom(C) npc = pc+4 args(Q,M, v)

C
 ((Q, pc, npc),M) ◦
call(pc,v)
−−−−−−→ ((Q, pc, npc),M)

(b)

Q = (R, F) R′ = R{out , local , in R([out])}{%sp (b, 0)}
alloc(M, b, 64, w) = M ′ Q′ = (R′, (R([local]),R([in])) ::F)

exec(Psave w, (Q,M), (Q′,M ′))

Q = (R, (fm1, fm2) ::F) R(%sp) = (b, 0) free(b,M) = M ′

R′ = R{out R([in]), local fm1, in fm2} Q′ = (R′,F)

exec(Prestore, (Q,M), (Q′,M ′))

(c)

Fig.16. Selected operational semantics rules for high-level program. (a) High-level program transitions. (b) High-level thread local
transitions. (c) High-level instruction transitions.

Note that the client code and the implementations

of primitives in the low level are both SPARCv8 code

heap. There is no need to define their linking in seman-

tics.

4.3 Primitive Correctness

We first establish a state relation between low- and

high-level program states. We define this relation below

(⊎ means disjoint union), shown as “S ∼ S”.

M = Mc ⊎MT ⊎ {TaskCur (t, 0)} ⊎M ′

(Mc, Q) ⇓c (t,K) MT ⇓r T \{t} D = nil

(M,Q,D) ∼ (T, t,K,M ′)

The low-level memory M is split into four parts: Mc

used saving the context of the current thread t; MT sav-

ing the contexts of the ready threads, except the current

thread t; a singleton memory cell located TaskCur sav-

ing the current thread ID; and the shared memory M ′

that is the same as the high-level memory. The delayed

buffer D is nil, since the client is not permitted to mod-

ify any special register through the wr instructions. MT

is “abstracted” as a thread pool in the high-level pro-

gram. Their relation is represented as “MT ⇓r T \{t}”.

We use “(Mc, Q) ⇓c (t,K)” to represent the state rela-

tion of the current thread in low- and high-level pro-

grams.

The correctness of abstract assembly primitives is

defined in terms of contextual refinement. We give its

formal definition in Definition 1. And we use the “event

trace refinement” proposed by Liang et al. [9]

Definition 1 (Primitive Correctness). Cas ⊑ Ω iff

for any C, S, S, pc and npc, if S ∼ S and ProgSafe(P),

then P ⊆ P, where P = (C ⊎ Cas, S, pc, npc), P =

((C,Ω), S) and S.K = (, pc, npc).

We use the code heap Cas to represent the imple-

mentations and Ω to represent the set of corresponding

Jun-Peng Zha et al.: Modular Verification of SPARCv8 Code 1397

abstract assembly primitives. The contextual refine-

ment, denoted as Cas ⊑ Ω, says that if and only if

for any client code (or context) C, low-level program

state S, high-level program state S, program counters

pc and npc, if the low- and high-level program states

satisfy the state relation S ∼ S and the high-level pro-

gram will never get stuck (shown as ProgSafe(P)), then

there is an event trace refinement [9], which means that

P produces no more observable behaviors than P and

is denoted as P ⊆ P, between low- and high-level pro-

grams. ProgSafe(P) is defined formally below:

ProgSafe(P) ::= ∀P′.(P :==⇒∗ P′) =⇒ (∃P′′.P′ :==⇒ P′′).

The client code C is the SPARCv8 code. Therefore, the

high-level code is a pair of C and Ω, and the low-level

code is just the union of C and Cas, shown as (C⊎Cas),

because both of C and Cas are SPARCv8 code heaps.

C ⊎ Cas ::=C ∪ Cas if dom(C) ∩ dom(Cas) = ∅.

4.4 Relational Program Logic for Refinement

Verification

Relational Assertion. Fig.17 gives the relational as-

sertion language, and its semantics is given in Fig.18.

The relational assertions are interpreted over the re-

lational state (S, S,A, w), which contains the low-level

state S, the high-level state S, the abstract assembly

primitive command A defined in Fig.18, and the word

w recording the number of the tokens. The high-level

primitive command A is either an abstract assembly

primitive Υ parameterized over arguments v, or a ⊥

meaning the primitive has already been executed. The

relational assertion p reserves the original assertion p

describing the low-level state S.

(RelAsrt) p,q ::= p | r̂n֌ v | l֌ v | Emp
| t c K | t r K | LAM | �(w)
| p↓ | p ∧ q | p ∨ q | p ∗ q | . . .

Fig.17. Syntax of relational assertion.

We define r̂n֌ v and l ֌ v to describe the state

of register files and memory in the high level. The as-

sertion Emp says that the high-level memory and the

thread pool are both empty, and the low-level state sat-

isfies emp defined in Fig.9. The assertions t c K and

t r K represent the thread local state of the current

and ready thread respectively. Note that the threads

in the thread pool are viewed as resources and can be

separated by separation conjunction.

The assertion LAM means the current high-level

primitive command is A. And the assertion �(w) takes

a word w, which can also be separated by separation

conjunction (∗), to state that the number of tokens in

current state is “no less” than w. Tokens are used to

avoid infinite loops and recursive function calls to make

sure the termination preserving refinement.

The assertion p ↓, which is similar to p ↓ defined

in Fig.9, describes the state after executing one step of

(S, S,A, w) |=Emp ::= S.M = ∅ ∧ S.T = ∅ ∧ S |=emp

(S, S,A, w) |=p ::= S |=p ∧ S.M = ∅ ∧ S.T = ∅

(S, S,A, w) |= r̂n֌ v ::= S.K.Q.R(r̂n) = v ∧ (S, S,A, w) |=Emp

(S, S,A, w) |= l֌ v ::= S.M = {l v} ∧ S.T = ∅ ∧ S |=emp

(S, S,A, w) |= t c K ::= S.T\{t} = ∅ ∧ S.t = t ∧ S.K = K ∧ S.M = ∅ ∧ S |=emp

(S, S,A, w) |= t r K ::= S.T = {t K} ∧ S.M = ∅ ∧ t 6= S.t ∧ S |=emp

(S, S,A, w) |=LA′M ::= A = A′ ∧ (S, S,A, w) |=Emp

(S, S,A, w) |=�(w′) ::= w′ 6 w ∧ (S, S,A, w) |=Emp

(S, S,A, w) |=p↓ ::= ∃S′. ((S′, S,A, w) |=p) ∧ (R′,D′)⇉ (R,D)
where S = (M, (R, F),D), S′ = (M, (R′, F),D′)

(S, S,A, w) |=p ∗ q ::= ∃S1, S2, S1, S2, w1, w2. S = S1 ⊎ S2 ∧ S = S1 ⊎ S2 ∧
w = w1 +w2 ∧ (S1, S1,A, w1) |=p ∧ (S2, S2,A, w2) |=q

T1 ⊥ T2 ::= (dom(T1) ∩ dom(T2)) = ∅

S1 ⊎ S2 ::=







(T1 ∪ T2, t,K,M1 ∪M2), if T1 ⊥ T2 ∧ M1 ⊥ M2 ∧
S1 = (T1, t,K,M1) ∧ S2 = (T2, t,K,M2),

undefined, otherwise.

(HPrimCom) A ::= Υ(v) | ⊥
Υ(v)(S)(S′)

(Υ(v), S) 99K (⊥, S′)

Fig.18. Semantics of relation assertion.

1398 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

delayed writes.

Inference Rules in Relational Program Logic. The

code specification θ̂ and the code heap specification Ψ

in relational program logic are defined below.

(valList)ι ∈ list value
(pAsrt) fp, fq ∈ valList → RelAsrt

(CdSpec)θ̂ ::=(fp, fq)
(CdHpSpec) Ψ ::= {f θ̂}∗

Here, fp and fq are relational assertions parame-

terized over a list of values ι. Fig.19 shows selected

inference rules for refinement verification in our logic.

The top rule WfPrim verifies the contextual refinement

between the code heap Cas and the corresponding ab-

stract assembly primitive set Ω. It requires that each

code block specified in Ψ can be verified with respect to

its specification, shown as (⊢ Cas : Ψ), and the speci-

fications of the implementations of abstract assembly

primitives need to meet some restrictions, shown as

wdSpec(fp, fq,Υ), which we will discuss in more de-

tails following. The inference rules for jmp and call in

relational program logic will consume a token, shown as

�(1), in order to avoid infinite loops and recursive func-

tion calls and ensure termination-preserving. wf(pr),

whose definition is omitted here, means there is no sub-

term in form of (t c K), (r̂n ֌ v) and LAM in the

frame pr, because the state they described is not sep-

arated by separation conjunction ∗. The ABSCSQ rule

allows us to execute the high-level primitive command

specified in precondition. The implication p ⇛ p′ is

defined below formally:

(p⇒ p′)∨

(∀S, S,A, w. ((S,S,A, w) |=p) =⇒
(∃S′,A′, w′. ((A, S) 99K (A′, S′)) ∧ ((S, S′,A′, w′) |=p′)).

The inference rules for instructions are not shown here,

since they are not different from the rules in Fig.11.

Well-Defined Specification. wdSpec(fp, fq,Υ) is de-

fined formally in Definition 2. It contains three prop-

erties that the specification needs to satisfy.

Definition 2 (Well-Defined Specification).

wdSpec(fp, fq,Υ) holds, iff:

1) for any v, S, S′, Sr, if Υ(v)(S)(S′), and S ⊥ Sr,

then the following holds (where f = S′.K.Q.R(r15)) :

• S′.K.pc = f+8, S′.K.npc = f+12;

• there exist S′′ and S′r, such that Υ(v)(S ⊎ Sr)(S
′′),

S′′ = S′ ⊎ S′r, and Sr.T = S′r.T , Sr.M = S′r.M ;

2) for any ι, there exists v, such thatfp ι ⇒ LΥ(v)M ∗ true, and fq ι ⇒ L⊥M ∗ true;

3) for any v, S, S, if (S, S, ,) ∈ INV(Υ(v), v), there

exist ι,pr and w, such that

Ψ ⊢ Cas : Ψ (Well-Formed Primitive)

⊢ Cas : Ψ

for all f ∈ dom(Ω) :
Ψ(f) = (fp, fq) Ω(f) = Υ wdSpec(fp, fq,Υ)

Ψ ⊢ Cas : Ω
(WfPrim)

⊢ Cas : Ψ (Well-Formed Code Heap)

for all f ∈ dom(Ψ), ι : Ψ(f) = (fp, fq) Ψ ⊢ {(fp ι, fq ι)} f : Cas[f]

⊢ Cas : Ψ
(WfInt)

Ψ ⊢ {(p,q)} f : I (Well-Formed Instruction Sequences)

 {p↓} i {p′} Ψ ⊢ {(p′,q)} f+4 : I

Ψ ⊢ {(p, q)} f : i; I
(SEQ)p↓⇒ (a=a f

′) f′ ∈ dom(Ψ) Ψ(f′) = (fp, fq)

 {p↓↓} i {p′ ∗ �(1)} ∃ι,pr . (p′ ⇒ fp ι ∗ pr) ∧ (fq ι ∗ pr ⇒ q) ∧ wf(pr)

Ψ ⊢ {(p,q)} f : jmp a; i
(JMP)

f′ ∈ dom(Ψ) Ψ(f′) = (fp, fq) Ψ ⊢ {(p′,q)} f+8 : Ip↓⇒ (r15 7→) ∗ p1
 {(r15 7→f ∗ p1)↓} i {p2 ∗ �(1)}
∃ι,pr. (p2 ⇒ fp ι ∗ pr) ∧ (fq ι ∗ pr ⇒ p′) ∧ (fq ι ⇒ r15=f) ∧ wf(pr)

Ψ ⊢ {(p,q)} f : call f′; i; I
(CALL)p↓↓⇒ (r15 7→f′) ∗ p1
 {p1} i {p2} (r15 7→f′) ∗ p2 ⇒ q

Ψ ⊢ {(p,q)} f : retl; i
(RETL)p ⇛ p′ Ψ ⊢ {(p′,q′)} f : I q′ ⇛ q

Ψ ⊢ {(p,q)} f : I
(ABSCSQ)

Fig.19. Selected inference rules for refinement verification.

Jun-Peng Zha et al.: Modular Verification of SPARCv8 Code 1399

(S, S,Υ(v), w) |= (fp ι ∗ pr), (fq ι ∗ pr) ⇒ INV(⊥,),

and Sta(Υ(v),pr) hold.

First, the program counters should equal f+8 and

f+12 respectively, where f is contained in the r15 regis-

ter after the execution of the abstract assembly primi-

tive Υ. It ensures that low-level implementations and

corresponding high-level abstract assembly primitives

return to the same code pointers. We also require that

if an abstract assembly primitive can execute safely on

a part of program state, it can also execute safely on the

whole program state, and keeps the additional program

state unchanged. S ⊥ Sr is defined formally below:

S ⊥ Sr ::=T ⊥ T ′ ∧M ⊥ M ′ ∧ t = t′ ∧ K = K′

where S = (T, t,K,M), Sr = (T ′, t′,K′,M ′).

Second, the abstract assembly primitive should be spe-

cified in the precondition, and its execution should be

done in the final state. Third, an “invariant” holds be-

tween low- and high-level programs at the entry of the

function. Our logic needs to ensure that such invariant

can be reestablished when the function returns. We

define such invariant as INV formally below:

INV(A, v) ::= {(S, S,A, w) |S ∼ S ∧ (∃S′.(A, S) 99K∗ (⊥,S′))
∧ args(S.K.Q,S.M, v)}.

The invariant consists of the state relation between low-

and high-level program states, shown as S ∼ S and de-

fined in Subsection 4.3, and the safe execution of the

primitive command A, which means that A can exe-

cute zero (if A =⊥) or one step (if A = Υ(v)) from the

current state, shown as ∃ S′. (A, S) 99K∗ (⊥, S′). Includ-

ing the safe execution of A in the invariant is essential,

since we can get some knowledge of the high-level pro-

gram state from it. For example, if INV(switch(nil), nil)

holds, we know that the location TaskNew must save a

pointer pointing to a ready thread in the thread pool;

otherwise the switch primitive cannot execute.

INV(switch(nil),nil) =⇒
∃ t,K. (t r K) ∗ (TaskNew֌ (t, 0)) ∗ true

We use the frame pr for local reasoning. Sta(Υ(v),pr),

whose definition is omitted here, says that pr still holds

after the execution of Υ(v).

4.5 Semantics and Soundness

We first define the simulation relation for instruc-

tion sequences. It says Cas can execute safely from S,

pc and npc until reaching the end of the current in-

struction sequence (Cas[pc]), and q holds if Cas[pc] ends

with the return instruction retl, and for each step of

the low-level execution, the high-level program will ex-

ecute zero or one step. It is formally defined in Defi-

nition 3. Here we use “ 7−→n ” to represent n-step

execution. The w in simulation records the number of

tokens. It will be consumed when meeting the jmp and

call instructions to avoid infinite loops and recursive

in low level for termination preserving, and reset when

the high-level abstract assembly primitive executes.

Definition 3 (Simulation for Instruction Se-

quence). q; Ψ |=(Cas, S, pc, npc)4w (A, S) holds if and

only if the followings are true (we omit the case for be

here, which is similar to jmp).

1) If Cas(pc) = i then:
• there exist S′, pc′, npc′, such that Cas ⊢

(S, pc, npc) 7−→ (S′, pc′, npc′),

• for any S′, pc′, npc′,

if Cas ⊢ (S, pc, npc) 7−→ (S′, pc′, npc′), then there

exist A′, S′ and w′, such that:

a) either A′ = A, S′ = S and w′ = w;

or (A, S) 99K (A′, S′),

b) q; Ψ |=(Cas, S
′, pc′, npc′)4w′ (A′, S′).

2) If Cas(pc) = jmp a then:
• there exist S′, pc′, npc′, such that

Cas ⊢ (S, pc, npc) 7−→2 (S′, pc′, npc′),

• for any S′, pc′, npc′,

if Cas ⊢ (S, pc, npc) 7−→2 (S′, pc′, npc′), then

there exist fp, fq, ι, A′, S′, w′, w′′ < w′ andpr such that the followings hold:

a) npc′ = pc′+4, Ψ(pc′) = (fp, fq),
b) either A′ = A, S′ = S and w′ = w;

or (A, S) 99K (A′, S′),

c) (S′, S′,A′, w′′) |=(fp ι) ∗ pr, (fq ι) ∗ pr ⇒ q,
wf(pr).

3) If Cas(pc) = be f then

4) If Cas(pc) = call f then:
• there exist S′, pc′, npc′, such that

Cas ⊢ (S, pc, npc) 7−→2 (S′, pc′, npc′),

• for any S′, pc′ and npc′,

if Cas ⊢ (S, pc, npc) 7−→2 (S′, pc′, npc′), then

there exist fp, fq, ι,A′, S′, w′, w′′ < w′ and pr,

such that the followings hold:

a) npc′ = pc′+4, Ψ(pc′) = (fp, fq),
b) either A′ = A, S′ = S and w′ = w;

or (A, S) 99K (A′, S′),
c) (S′, S′,A′, w′′) |=(fp ι) ∗ pr, wf(pr),

d) for any S0, S0, A0, w0,

if (S0, S0,A0, w0) |=(fq ι) ∗ pr, thenq; Ψ |=(Cas, S0, pc+8, pc+12)4w0
(A0, S0),

JCST
高亮
上1）2）3）之间的行间距比这个大

我看其它的都大，这个也加大吧，统一

13718
备注
这里的"."似乎和公式中的 "(" 重叠了。

1400 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

e) (fq ι) ⇒ (r15 = pc).

5) If Cas(pc) = retl then:

• there exist S′, pc′, npc′, such that

Cas ⊢ (S, pc, npc) 7−→2 (S′, pc′, npc′),

• for any S′, pc′ and npc′,

if Cas ⊢ (S, pc, npc) 7−→2 (S′, pc′, npc′), then

there exist A′, S′, and w′, such that:

a) either A′ = A, S′ = S and w′ = w;

or (A, S) 99K (A′, S′),

b) (S′, S′,A′, w′) |= q, pc′ = S′.Q.R(r15) + 8,

and npc′ = S′.Q.R(r15) + 12.

Then we define the semantics for well-formed in-

struction sequences and well-formed code heap below.

Definition 4 (Judgment Semantics).

• Ψ |= {(p,q)} f : I if and only if, for all Cas, S, S,

A and w such that Cas[f] = I and (S, S,A, w) |= p, we
have q; Ψ |=(Cas, S, f, f+4)4w (A, S).

• |= Cas :Ψ if and only if, for all f, fp and fq such

that Ψ(f) = (fp, fq), we have Ψ |= {(fp ι, fq ι)} f :

Cas[f] for all ι.

Next, we define the simulation for functions in Def-

inition 5. It says that if there exists a relational state

(S, S,A, w) satisfying the precondition p, then we have

the simulation q |= (Cas, S, f, f + 4) 40
i (A, S) defined

in Definition 6. The simulation, which ensures the safe

execution of the low-level SPARCv8 function and its

corresponding high-level abstract assembly primitive,

in Definition 6 carries an index i, which is used to en-

sure the termination preserving, and the depth k of

function calls, which increases by the call instruction

and decreases by retl (unless k = 0).

Definition 5 (Simulation for Function).

(Cas, f)4
(p,q)A ::= ∀S, S, w. (S, S,A, w) |=p =⇒
∃ i ∈ Index. q |= (Cas, S, f, f + 4)40

i (A, S),

where q |= (Cas, S, pc, npc)4
k
i (A, S) is defined in Defi-

nition 6.

Definition 6. q |= (Cas, S, pc, npc)4
k
i (A, S) holds

if and only if the followings are true:

1) if Cas(pc) ∈ {i, jmp a, be f}, then:

• there exist S′, pc′, npc′, such that

(Cas, S, pc, npc) ::
τ

==⇒ (Cas, S
′, pc′, npc′);

• for any S′, pc′, npc′,

if (Cas, S, pc, npc) ::
τ

==⇒ (Cas, S
′, pc′, npc′),

then one of the followings hold:

a) ∃ j < i. q |= (Cas, S
′, pc′, npc′)4k

j (A, S);

b) there exists S′, j ∈ Index, such that

(A, S) 99K (⊥, S′) andq |= (Cas, S
′, pc′, npc′)4k

j (⊥, S′) holds;

2) if Cas(pc) = call f, then:

• there exist S′, pc′, npc′, such that

(Cas, S, pc, npc) ::
τ

==⇒2 (Cas, S
′, pc′, npc′);

• for any S′, pc′, npc′,

if (Cas, S, pc, npc) ::
τ

==⇒2 (Cas, S
′, pc′, npc′),

then one of the followings holds:

a) ∃ j < i. q |= (Cas, S
′, pc′, npc′)4k+1

j (A, S);

b) there exist S′, j ∈ Index, such that

(A, S) 99K (⊥, S′) andq |= (Cas, S
′, pc′, npc′)4k+1

j (⊥, S′) holds;

3) if Cas(pc) = retl, then:

• there exist S′, pc′, npc′, such that

(Cas, S, pc, npc) ::
τ

==⇒2 (Cas, S
′, pc′, npc′);

• for any S′, pc′, npc′,

if (Cas, S, pc, npc) ::
τ

==⇒2 (Cas, S
′, pc′, npc′),

then there exist j ∈ Index, S′ and A′, such that

the followings hold:

a) either j < i, S′ = S and A′ = A;

or (A, S) 99K (A′, S′);

b) if k = 0, then there exists w′, such that

(where f = S′.Q.R(r15)):

(S′, S′,A′, w′) |=q, A′ =⊥,

pc′ = f+8, and npc′ = f+12;

else q |= (Cas, S
′, pc′, npc′)4k−1

j (A′, S′).

Then we give the semantics for well-formed primi-

tive in Definition 7.

Definition 7 (Well-Defined Primitive Set Seman-

tics).

Ψ |= Cas : Ω ::=∀ f ∈ dom(Ω), ι. ∃Υ, v, fp, fq.
wdSpec(fp, fq,Υ) ∧ (fp ι ⇒ LΥ(v) M ∗ true)
∧ (Cas, f)4

(fp ι, fq ι)Υ(v),

where Ω(f) = Υ,Ψ(f) = (fp, fq).
It says that for any high-level abstract assembly

primitive in the primitive set Ω, we can establish a

simulation relation defined in Definition 5 between its

low-level implementation in code heap Cas and itself.

Theorem 1 shows the soundness of our logic.

Soundness Proof. We show the soundness proof of

our logic. We first give Lemma 3 to show that the sim-

ulation relation for functions can be decomposed into

the simulation relations for individual instruction se-

quences.

Lemma 3. If Ψ |= {(p,q)} pc : Cas[pc] and

|= Cas : Ψ, then (Cas, f)4
(p,q)A.

JCST
附注
这个行间距比别的大？

Jun-Peng Zha et al.: Modular Verification of SPARCv8 Code 1401

Then, in Lemma 4, we show that our logic ensures

the simulations.

Lemma 4 (Logic Ensures Simulation).

• Ψ ⊢ {(p,q)} f : I =⇒ Ψ |= {(p,q)} f :I;

• ⊢ Cas : Ψ =⇒|= Cas : Ψ;

• Ψ ⊢ Cas : Ω =⇒ Ψ |= Cas : Ω.

Next, we give Lemma 7, which says that the sim-

ulation for functions implies the primitive correctness.

We define a whole program simulation in Definition 8

and divide the proof of Lemma 7 into two steps. First,

we prove that the simulation for functions implies the

whole program simulation in Lemma 5. Second, we

prove that the whole program simulation implies the re-

finement relation between low- and high-level programs

in Lemma 6.

Definition 8 (Whole Program Simulation). When-

ever P 6i P holds, the followings are true:

1) if P ::
τ

==⇒ P ′, then:

• ∃j < i. P ′ 6j P; or

• ∃j,P′.P :
τ

==⇒+ P′, and P ′ 6j P′;

2) if P ::
e

==⇒ P ′, then ∃j,P′.P :
e

==⇒+ P′, and P 6j P;

3) if P ::
τ

==⇒ abort, then P :
τ

==⇒+ abort.

Lemma 5. If Ψ |= Cas : Ω, S ∼ S, ProgSafe((C,

Ω), S) and S.K = (, pc, npc), then there exists i ∈

Index, such that (C ⊎ Cas, S, pc, npc) 6
i ((C,Ω), S).

Lemma 6. P 6i P =⇒ P ⊆ P.

Lemma 7 (Simulation Implies Primitive Correct-

ness).

Ψ |= Cas : Ω =⇒ Cas ⊑ Ω.

Proof. We unfold Cas ⊑ Ω according to its defini-

tion in Definition 1, and finish the proof by applying

Lemma 5 and Lemma 6. �

Theorem 1 (Logic Soundness).

Ψ ⊢ Cas : Ω =⇒ Cas ⊑ Ω.

Proof. The soundness proof can be done by applying

Lemma 4 and Lemma 7. �

5 Verifying Context Switch Routine

We apply our program logic to verify that a con-

text switch routine implemented in SPARCv8, which

saves the current task’s context and restores the new

task’s context, contextually refines the switch primitive

defined in Subsection 4.1. Fig.20 shows the structure

of the context switch routine that we proved.

• SwitchEntry is the entry of the context switch

routine. It saves the local and in registers of the cur-

rent window into the current task’s stack in memory,

and calls reg save to save the other registers into the

current task’s TCB.

Fig.20. Structure of context switch routine.

• Save UsedWindows saves the register windows (ex-

cept the current one) into the current task’s stack in

memory.

• Switch NewContext restores the general registers

from the new task’s TCB (by calling reg restore) and

its stack in memory respectively. Then it sets the new

task as the current one.

The main complexity of the verification lies in the

code that manages the register window. To save all the

used register windows, Save UsedWindows repetitively

restores the next window into general registers (as the

current window) and then saves them into memory, un-

til all the windows are saved.
Specification. Below we give the pre- and post-

conditions (apre and apost) of the verified module re-
spectively.

apre(tc, tn, env,nst,Kc,Kn) ::=
Env(env) ∗ (TaskNew Z⇒ (tn, 0)) ∗ �(10)∗

CurT(tc, , env,Kc) ∗ RdyT(tn,nst,Kn) ∗ L switch(nil) M

apost(tc, tn, env,nst,Kc,Kn) ::=
∃ env′,K′.Env(env′) ∗ (TaskNew Z⇒ (tn, 0))∗

(CurT(tn,nst, env
′,K′) ∧ p env(env′) = nst)∗

RdyT(tc, p env(env),Kc) ∗ L⊥ M

Each of them takes six arguments, the ID of the cur-

rent task tc, the ID of the new task tn, the values env

of general registers and other register windows saving

contexts, the new task’s context nst to be restored,

the current task’s thread local state Kc and the new

task’s thread local state Kn. In the specification, we

use Env(env) to specify the values of general registers

and the register windows. We describe the state of the

current task using CurT(tc, , env,Kc). It describes the

states of the current task tc in the low and high level,

and their state relation. Similarly, RdyT(tn, nst,Kn)

describes the states of the new task tn in the low

and high level, and their state relation. The mem-

ory location TaskNew records the identifier of the new

1402 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

task. TaskNew Z⇒ (tn, 0), where l Z⇒ v is defined as

(l 7→v) ∗ (l֌ v), denotes that TaskNew saves (tn, 0) in

both the low- and high-level memory.

The precondition takes 10 tokens (�(10)). As we

have explained, verifying call and jmp instructions

will consume a token. Therefore, verifying calling

functions reg save and reg restore will both con-

sume a token. And Save Usedwindows, which saves

the context of each previous window into memory

repetitively until the invalid one, will execute at most

eight times, because the upper bound of the number

of windows is eight. Therefore, 10 tokens are suffi-

cient (two for reg save and reg restore, and eight

for Save Usedwindows).

If we compare apre and apost, we can see that tn be-

comes the current task (CurT(tn, nst, env
′,K′)), and its

general registers and stack, specified by Env(env′), are

loaded from the saved context nst (i.e., p env(env′) =

nst). Here p env(env′) refers to the part of the environ-

ment that we want to save or restore as context. Corre-

spondingly, tc becomes a non-current-thread, and part

of its environment env at the entry of the context switch

is saved, as specified by RdyT(tc, p env(env),Kc). The

execution of switch should be done in the final state.

We use K′ to represent the thread local state of tn in-

stead of Kn in the final state, since the execution of

switch will modify the program counters in Kn.

Proof Outline. We show how to use our relational

program logic defined in Fig.19 to verify the correct-

ness of the context switch routine. We first instantiate

the set of abstract assembly primitives (2) and the code

heap specification (3) below:

Ω ::= {SwitchEntry switch}. (2)

Ψ ::= {SwitchEntry (apre, apost),
reg save (fp

rs
, fq

rs
),

reg restore (fprr, fqrr),
Save Usedwindows (fp

su
, fq

su
),

Switch NewContext (fpsn, fqsn)}.

(3)

The set of abstract assembly primitives Ω con-

tains only one abstract assembly primitive switch. The

code heap specification Ψ contains the specifications

of each code block. We use (fprs, fqrs), (fprr, fqrr),

(fpsu, fqsu) and (fpsn, fqsn) to represent the specifi-

cations of reg save, reg restore, Save Usedwindows

and Switch NewContext respectively. Since the post-

condition in our logic specifies the state when the cur-

rent function returns, the specification of SwitchEntry

is (apre, apost).

First, we prove that the specification of the context

switch routine is well-defined in Lemma 8.

Lemma 8. wdSpec(apre, apost, switch).

Proof. It is proved by the definition of wdSpec (in

Definition 2). �

We use Cswitch to represent the code heap storing

the code of the context switch routine, which includes

the code blocks SwitchEntry, reg save, reg restore,

Save Usedwindows and Switch NewContext. We prove

that Cswitch is well-defined in Lemma 9.

Lemma 9. ⊢ Cswitch : Ψ.

Proof. From the WfInt rule in Fig.19, we need to

prove that for any ι1, ι2, ι3, ι4 and ι5, the followings

hold (fse, frs, frr, fsu and fsn represent the start-

ing labels of SwitchEntry, reg save, reg restore,

Save Usedwindows and Switch NewContext respec-

tively):

• Ψ ⊢ {(apre ι1, apost ι1)} fse : Cswitch[fse];

• Ψ ⊢ {(fp
rs

ι2, fqrs
ι2)} frs : Cswitch[frs];

• Ψ ⊢ {(fprr ι3, fqrr ι3)} frr : Cswitch[frr];

• Ψ ⊢ {(fpsu ι4, fqsu ι4)} fsu : Cswitch[fsu];

• Ψ ⊢ {(fp
sn

ι5, fqsn
ι5)} fsn : Cswitch[fsn].

The correctness proof of each code block can be done

by applying the inference rules for instruction sequences

shown in Fig.19. We can choose any place to apply the

ABSCSQ rule to execute switch. Here, we apply the AB-

SCSQ rule in verifying Switch NewContext, when the

context switch routine returns, as shown in Fig.21. In

Fig.21, we use the solid circle to represent the point

applying the ABSCSQ rule, and after the execution of

switch, the state relation, defined in Subsection 4.3 and

represented as the solid lines in Fig.21, between the low

level and the high level can be reestablished. �

Fig.21. Point doing refinement reasoning.

Theorem 2 (Context Switch Routine Correctness).

Ψ ⊢ Cswitch : Ω.

Proof. The proof follows the WfPrim rule in Fig.19,

and Lemma 8 and Lemma 9. �

This part of work has not been mechanized in Coq.

In our conference paper [4], we show that we apply our

Jun-Peng Zha et al.: Modular Verification of SPARCv8 Code 1403

logic for partial correctness to verify the main body of

the context switch routine in a realistic embedded OS

kernel for aerospace crafts, which consists of around

250 lines of SPARCv8 code, by 6 690 lines of Coq proof

scripts. Here, the context switch routine verified by ap-

plying our relational program logic is a simplified ver-

sion of such context switch routine, which omits some

details like judging whether the current thread is a valid

one. Verifying that each code block is well-defined us-

ing the inference rules in our new logic is not different

from the previous work. The additional proof efforts

include: 1) proving that the specification of context

switch routine is well-defined (shown in Lemma 8); 2)

applying the ABSCSQ rule to execute the switch primi-

tive and proving that the state relation between low-

and high-level programs can be reestablished when the

context switch routine returns (as noted in the proof of

Lemma 9).

6 Related Work

There has been much work on assembly or ma-

chine code verification. Most of them do not sup-

port function calls or simply treat function calls in

the continuation-passing style where return addresses

are viewed as first-class code pointers [10–16]. SCAP [5]

supports assembly code verification with various stack-

based control abstractions, including function calls and

returns. We follow the same idea here. However, SCAP

gives a syntactic-based soundness proof by establish-

ing the preservation of the syntactic judgment, which

makes it difficult to interact with other modules veri-

fied in different logic. Since our goal is to verify inline

assembly and link the verified code with the verified C

programs, we give a direct-style semantic model of the

logic judgments. And it allows us to extend our pro-

gram logic in conference version [4] to support verifying

contextual refinement without many challenges. Also

SCAP is based on a simplified subset of assembly in-

structions, while our work is focused on a realistically

modeled subset of SPARCv8 instructions.

In terms of the support of realistic instruction sets,

previous work on proof-carrying code (PCC) and typed

assembly language (TAL) mostly supports subsets of

x86. Myreen and Gordon’s work [17] presents a frame-

work for ARM verification based on a realistic model

(but it does not support function calls and returns).

As part of the Foundational Proof-Carrying Code

(FPCC) project [11], Tan and Appel presented a pro-

gram logic Lc for reasoning about control flow in as-

sembly code [16]. Although Lc is implemented on top

of the SPARC machine language, the underlying logic

is a type system instead of a full-blown program logic

for functional correctness. It reasons about functions in

the continuation-passing style. Also handling SPARC

features such as delayed writes or delayed control trans-

fers is not the focus of Lc. There has been work on

mechanized semantics of the SPARCv8 ISA. Hou et

al. [18] modelled the SPARCv8 ISA in Isabelle/HOL,

and tested their formal model against LENON3 simu-

lation board, which is a synthesisable VHDL model of a

32-bit processor compliant with the SPARCv8 architec-

ture, through more than 100000 instruction instances.

Wang et al. [7] formalized its semantics in Coq. Our op-

erational semantics of SPARCv8 follows Wang et al. [7]

However neither Wang et al. [7] nor we validate the for-

malization against actual hardware, and this remains

as future work.

Ni et al. [19] verified a context switch module of 19

lines in x86 code to showcase the support of embedded

code pointers (ECP) in XCAP [15]. We use our program

logic to verify the contextual refinement between a con-

text switch routine in SPARCv8 and switch primitive.

The context switch routine implemented in SPARCv8

that we verified is more complicated than that imple-

mented in x86, because of the requirement to save the

contexts stored in register window in memory.

Yang and Hawblitzel [20] verified Verve, an x86

implementation of an experimental operating system.

Verve has two levels, the high-level TAL code and the

low-level “Nucleus” that provides primitive access to

hardware and memory. The Nucleus code is verified au-

tomatically using the Z3 SMT solver, while the goal of

our work is to generate machine checkable proofs. An-

other key difference is the use of different ISAs. Here

we give details to verify specific features of SPARCv8

programs.

There have been many techniques and tools pro-

posed for automated program verification (e.g., [21,22]).

It is possible to adapt them to verify SPARCv8 code.

We propose a new program logic and do the verifi-

cation in Coq mainly because the work is part of a

big project for a fully certified OS kernel for aerospace

crafts whose inline assembly is written in SPARCv8.

We already have a program logic implemented in Coq

for C programs, which allows us to verify C code with

Coq proofs. Therefore we want to have a program logic

for SPARCv8 so that it can be linked with the cor-

rectness proof of C and can generate machine-checkable

Coq proofs too. That is, many of the automated verifi-

cation techniques can be applied to reduce the manual

1404 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

efforts to write Coq proofs, which we would like to study

in the future work.

7 Conclusions

We defined a relational program logic for SPARCv8.

Our logic is based on a realistic semantics model and

supports the main features of SPARCv8, including de-

layed control transfer, delayed writes, and register win-

dows. It also supports modular reasoning of function

calls in a direct-style and refinement verification. We

applied our logic to verify that a context switch rou-

tine implemented in SPARCv8 contextually refines the

switch primitive for task switching.

Our current work does not consider interrupts in the

machine model. We would like to extend it for concur-

rency verification and finish S1 shown in Fig.2 in the

future. S1 shown in Fig.2 says that the compilation

ensures that the Pseudo-SPARCv8 code refines the C

program with abstract assembly primitives.

References

[1] Xu F, Fu M, Feng X, Zhang X, Zhang H, Li Z. A practical

verification framework for preemptive OS kernels. In Proc.

the 28th International Conference, July 2016, pp.59-79.

[2] Klein G, Elphinstone K, Heiser G, Andronick J, Cock D,

Derrin P, Elkaduwe D, Engelhardt K, Kolanski R, Norrish

M, Sewell T, Tuch H, Winwood S. seL4: Formal verifica-

tion of an OS Kernel. In Proc. the 22nd ACM Symposium

on Operating Systems Principles, Oct. 2009, pp.207-220.

[3] Gu R, Koenig J, Ramananandro T, Shao Z, Wu X N, Weng

S C, Zhang H, Guo Y. Deep specifications and certified ab-

straction layers. In Proc. the 42nd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Lan-

guages, Jan. 2015, pp.59-5608.

[4] Zha J, Feng X, Qiao L. Modular verification of SPARCv8

code. In Proc. the 16th Asian Symposium on Programming

Languages and Systems, December 2018, pp.245-263.

[5] Feng X, Shao Z, Vaynberg A, Xiang S, Ni Z. Modular veri-

fication of assembly code with stack-based control abstrac-

tions. In Proc. the ACM SIGPLAN 2006 Conference on

Programming Language Design and Implementation, June

2006, pp.401-414.

[6] Leroy X, Blazy S. Formal verification of a C-like memory

model and its uses for verifying program transformations.

Journal of Automated Reasoning, 2008, 41(1): 1-31.

[7] Wang J, Fu M, Qiao L, Feng X. Formalizing SPARCv8 in-

struction set architecture in Coq. In Proc. the 3rd Inter-

national Symposium on Dependable Software Engineering:

Theories, Tools, and Applications, Oct. 2017, pp.300-316.

[8] Reynolds J. Separation logic: A logic for shared mutable

data structures. In Proc. the 17th IEEE Symposium on

Logic in Computer Science, July 2002, pp.55-74.

[9] Liang H, Feng X, Shao Z. Compositional verification of

termination-preserving refinement of concurrent programs.

In Proc. the Joint Meeting of the 23rd EACSL Annual

Conference on Computer Science Logic and the 29th An-

nual ACM/IEEE Symposium on Logic in Computer Sci-

ence, July 2014, Article No. 65.

[10] Necula G C, Lee P. Safe kernel extensions without run-time

checking. In Proc. the 2nd USENIX Symp. Operating Sys-

tem Design and Implementation, October 1996, pp.229-243.

[11] Appel A W. Foundational proof-carrying code. In Proc. the

16th Annual IEEE Symposium on Logic in Computer Sci-

ence, June 1998, pp.247-256.

[12] Morrisett G, Crary K, Glew N, Grossman D, Samuels R,

Smith F, Walker D, Weirich S, Zdancewic S. TALx86: A

realistic typed assembly language. In Proc. the 1999 ACM

SIGPLAN Workshop on Compiler Support for System Soft-

ware, May 1996, pp.25-35.

[13] Morrisett G, Walker D, Crary K, Glew N. From system

F to typed assembly language. In Proc. the 25th ACM

SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, Jan. 1998, pp.85-97.

[14] Yu D, Nadeem A H, Shao Z. Building certified libraries

for PCC: Dynamic storage allocation. Science of Computer

Programming, 2004, 50(1/2/3): 101-127.

[15] Ni Z, Shao Z. Certified assembly programming with em-

bedded code pointers. In Proc. the 33rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Lan-

guages, January 2006, pp.320-333.

[16] Tan G, Appel A W. A compositional logic for control flow.

In Proc. the 7th International Conference on Verification,

Model Checking, and Abstract Interpretation, Jan. 2006,

pp.80-94.

[17] Myreen M O, Gordon M J. Hoare logic for realistically mod-

elled machine code. In Proc. the 13th International Confe-

rence on Tools and Algorithms for Construction and Ana-

lysis of Systems, March 2007, pp.568-582.

[18] Hou Z, Sanán D, Tiu A, Liu Y, Hoa K C. An executable

formalisation of the SPARCv8 instruction set architecture:

A case study for the LEON3 processor. In Proc. the 21st

International Symposium on Formal Methods, November

2016, pp.388-405.

[19] Ni Z, Yu D, Shao Z. Using XCAP to certify realistic sys-

tems code: Machine context management. In Proc. the 20th

International Conference on Theorem Proving in Higher

Order Logics, Sept. 2007, pp.189-206.

[20] Yang J, Hawblitzel C. Safe to the last instruction: Au-

tomated verification of a type-safe operating system. In

Proc. the 2010 ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, June 2010,

pp.99-110.

[21] Berdine J, Calcagno C, O’Hearn P W. Symbolic execution

with separation logic. In Proc. the 3rd Asian Symposium

on Programming Languages and Systems, November 2005,

pp.52-68.

[22] Berdine J, Calcagno C, O’Hearn P W. Smallfoot: Modular

automatic assertion checking with separation logic. In Proc.

the 4th International Symposium on Formal Methods for

Components and Objects, November 2005, pp.115-137.

Jun-Peng Zha et al.: Modular Verification of SPARCv8 Code 1405

Jun-Peng Zha is a Ph.D. candidate

in the Department of Computer Science

and Technology at Nanjing University,

Nanjing. He received his M.S. degree in

computer science from the University

of Science and Technology of China,

Hefei, in 2019, and his B.S. degree in

software engineering from Shandong

University at Weihai in 2016. His research interests are in

programming languages and formal methods, with a focus

on the verification of compiler and low-level assembly code.

Xin-Yu Feng is a professor in

Department of Computer Science and

Technology at Nanjing University, Nan-

jing. He obtained his Ph.D. degree in

computer science from Yale University,

New Haven, in 2007, and his M.E.

and B.S. degrees in computer science

from Nanjing University, Nanjing, in

2002 and 1999, respectively. His research interests are on

theories of programming languages and formal program

verification.

Lei Qiao is a professor in the Center

of On-Board Computer and Electronics

at Beijing Institute of Control Engi-

neering, Beijing. He received his Ph.D.

degree in computer science from the

University of Science and Technology

of China, Hefei, in 2007. His research

interests are in operating system design

and formal verification.

	1 Introduction
	2 SPARCv8 Assembly Language
	2.1 Language Syntax and States
	2.2 Operational Semantics

	3 Program Logic
	3.1 Assertions
	3.2 Inference Rules

	4 Refinement Verification of SPARCv8
	4.1 High-Level Pseudo-SPARCv8 Language
	4.2 Low-Level SPARCv8 Program
	4.3 Primitive Correctness
	4.4 Relational Program Logic for Refinement Verification
	4.5 Semantics and Soundness

	5 Verifying Context Switch Routine
	6 Related Work
	7 Conclusions

