
Modular Verification of Concurrent Thread
Management (Extended)

Yu Guo1, Xinyu Feng1, Zhong Shao2, and Peizhi Shi1

1 University of Science and Technology of China
{guoyu,xyfeng}@ustc.edu.cn sea10197@mail.ustc.edu.cn

2 Yale University
shao@cs.yale.edu

Abstract. Thread management is an essential functionality in OS kernels. How-
ever, verification of thread management remains a challenge, due to two conflict-
ing requirements: on the one hand, a thread manager—operating below the thread
abstraction layer–should hide its implementation detailsand be verified indepen-
dently from the threads being managed; on the other hand, thethread management
code in many real-world systems is concurrent, which might be executed by the
threads being managed, so it seems inappropriate to abstract threads away in the
verification of thread managers. Previous approaches on kernel verification view
thread managers as sequential code, thus cannot be applied to thread manage-
ment in realistic kernels. In this paper, we propose a novel two-layer framework
to verify concurrent thread management. We choose a lower abstraction level
than the previous approaches, where we abstract away the context switch routine
only, and allow the rest of the thread management code to run concurrently in the
upper level. We also treat thread management data as abstract resources so that
threads in the environment can be specified in assertions andbe reasoned about
in a proof system similar to concurrent separation logic.

1 Introduction

Thread scheduling in modern operating systems provides thefunctionality of virtualiz-
ing processors: when a thread is waiting for an event, it gives the control of the processor
to another thread to make the illusion that each thread has its own processor.

Inside a kernel, a thread manager supervises all threads in the system by manip-
ulating data structures called thread control blocks (TCBs). A TCB is used to record
important information of a thread, such as the machine context (or processor state), the
thread identifier, the status description, the location andsize of the stack, the priority
for scheduling, and the entry point of thread code. The TCBs are often implemented
using data structures such as queues for ready and waiting threads. Clearly, modifying
thread queues and TCBs would drastically change the behaviors of threads. Therefore,
a correct implementation of thread management is crucial for guaranteeing the whole
system safety. Unfortunately, modular verification of real-world thread management
code remains a big challenge today.

The challenge comes from two apparently conflicting goals which we want to achieve
at the same time: abstraction (for modular verification) andefficiency (for real-world

usability). On the one hand, TCBs, thread queues, and the thread scheduler are specifics
used to implement threads so they should sit at a lower abstraction layer. It is natural to
abstract them away from threads, and to verify threads and the thread scheduler sepa-
rately at different abstraction layers. Previous work has shown it is extremely difficult
to verify them together in one logic system [16]. On the otherhand, in many real-world
systems such as Linux-2.6.10 [13] and FreeBSD-5.2 [14], thethread scheduler code
itself is alsoconcurrentin the sense that there may be multiple threads in the system
running the scheduler at the same time. For instance, when a thread invokes a thread
scheduler routine (e.g.,cleaning up dead threads, load balancing, or thread scheduling)
and traverses the thread queue, it may be preempted by other threads who may call
the same routine and traverse the queue too. Also, in some systems [13,1] the thread
scheduling itself is implemented as a separate thread that runs in concurrent with other
threads. In these cases, we need to verify thread schedulersin a “multi-threaded” logic,
taking threads into account instead of abstracting them away.

Earlier work on thread scheduling verification fails to achieve the two goals at the
same time. Niet al.[16] verified both the thread switch and the threads in one logic [15],
which treats thread return addresses as first-class code pointers. Although their method
may support concurrent thread schedulers in real systems, it loses the abstraction of
threads completely, and makes the logic and specifications too complex for practical
use. Recent work [3,7] adopts two-layer verification frameworks to verify concurrent
kernels. Kernel code is divided into two layers: sequentialcode in the lower layer and
concurrent in the upper layer. In their frameworks, they putthe code manipulating TCBs
(e.g.,thread schedulers) in the low layer, and hide the TCBs of threads in the upper layer
so that the threads cannot modify them. Then they use sequential program logics to
verify thread management code. However, this approach is not usable for many realistic
kernels where thread managers themselves are concurrent and the threads are allowed
to modify the TCBs. Other work on OS verification [12,10] onlysupports non-reentrant
kernels,i.e., there is only one thread running in the kernel at any time.

In this paper, we propose a more natural framework to verify concurrent thread
managers. Our framework follows the two-layer approach, soconcurrent code at the
upper layer can be verified modularly with thread abstractions. However, the abstraction
level of our framework is much lower than previous frameworks [3,7]. Most part of the
code manipulating thread queues and TCBs is put in the upper layer and can be verified
as concurrent code. Our framework successfully achieves both verification goals: it not
only allows abstraction and modular verification, but also supports concurrency in real-
world thread management.

Our work is based on previous work on thread scheduler verification, but makes the
following new contributions:

– We introduce a fine-grained abstraction in our two-layer verification framework.
The abstraction protects only a small part of sensitive datain TCBs, and at the same
time allows multiple threads to modify other part of TCBs safely. Our division of
the two abstraction layers is consistent with many real systems. It is more natural
and can support more realistic thread managers than previous work.

– In the upper layer, we introduce the idea of treatingthreads as resources. The ab-
stract thread resources can be specified explicitly in the assertion language, and

2

luckywangwang
下划线

luckywangwang
下划线

luckywangwang
下划线

luckywangwang
高亮

A AAB BB S

save
context

load
context

context
switch

find nextscheduling
process

user thread

(I) (II) (III)

Fig. 1. Three patterns of scheduling

their use by concurrent programs can be reasoned about modularly following con-
current separation logic (CSL) [17]. By enforcing the invariant that the abstract
resource is consistent with the concrete thread meta data, we can ensure the safety
of the accesses over TCBs and thread queues inside threads.

– Because of the fine-grained abstraction of our approach, thesemantics of thread
scheduling do not have to be hardwired in the logic. Therefore, our framework
can be used to verify various implementation patterns of thread management. We
show how to verify the three common patterns of thread scheduling in realistic OS
kernels (while previous two-layer frameworks [3,7] can only verify one of them).

– In our extended TR [8], we also use our framework to verify thread schedulers with
hardware interrupts, scheduling over multiprocessor withload-balancing, and a set
of other thread management routines such as thread creation, join and termination.

The rest of this paper is organized as follows: we first introduce a simplified abstract
machine model for the higher-layer of our framework in Sec. 3; to show our main idea,
we propose in Sec. 4 our proof system for concurrent thread scheduling code over the
abstract machine. We show how to verify two prototypes of schedulers based on context
switch in Sec. 5. We compare with related work in Sec. 9, and conclude in Sec. 10.

2 Challenges and our approach

In this section, we illustrate the challenges of verifying code of thread scheduling by
showing three patterns of schedulers and discuss the verification issues. Then we infor-
mally explain the basic ideas of our approach.

2.1 Three patterns of thread scheduling

By deciding which thread to run next, the thread scheduler isresponsible for best uti-
lizing the system and makes multiple threads run concurrently. The scheduling process
consists of the following steps: selecting which thread to run next in a thread queue by
modifying TCBs, saving the context data of the current thread, and loading the con-
text data of the next thread. Context data is the state of the processor. By saving and
loading context data, the processor can run in multiple control flows, i.e., threads. Usu-
ally, context data can be saved on stacks or TCBs (we assume inthis paper that context

3

luckywangwang
下划线

luckywangwang
下划线

luckywangwang
下划线

AA
BB
CC

tcbA

tcbA

tcbB

tcbB

tcbC

tcbC
cswitch thread queue

thread queue

context

scheduler

(a) (b)

Fig. 2. Abstraction in verification framework

data is saved in TCBs for the brevity of presentation). Thereare various ways to imple-
ment thread schedulers. In Fig. 1 we show three common implementation patterns, all
modeled from real systems.

Pattern (I) is popular among embedded OS kernels (e.g.,FreeRTOS) and some
micro-kernels (e.g.,Minix [9] and Exokernel [2]). The scheduler in this pattern is in-
voked by function calls or interrupts. Thereafter, the scheduling is done in the following
steps: (1) saving the current context data, (2) finding the next thread, and (3) loading the
context data of the next thread (and switching to it implicitly through function return).

In pattern (II), the scheduling process is a function with the following steps: (1)
finding the next thread firstly, (2) performing context switch (saving the current context
data, loading the next one, and jumping to the next thread immediately), (3) and running
the remaining code of the function when the control is switched back from other threads.
This pattern is modeled from some mainstream monolithic kernels (e.g.,Linux [13], and
FreeBSD). Some embedded kernels (e.g.,RTEMS and uClinux) adopt it too. Note that
both the involved threads should be allowed to access the thread queue and TCBs when
calling the scheduler.

Pattern (III) uses a separate thread, calledscheduler thread, to do scheduling. One
thread may perform scheduling by doing context switch to thescheduler thread. The
scheduler thread is a big infinite loop: finding the next thread; performing context switch
to the next thread; and looping after return. This pattern can be seen in the GNU-pth
thread library, MIT-xv6 kernel, L4::Ka,etc.. Similar to pattern (II), all involved threads
in this pattern should be allowed to access the TCB of the scheduler thread and the
thread queue.

2.2 Challenges

As we can see from the patterns in Fig. 1, the control flow in thescheduling process
is very complicated. Threads switch back and forth via manipulating the thread queues
and TCBs. It is very natural to share TCBs and the thread queueamong threads in order
to support all these scheduling patterns. On the other hand,it is important to ensure that
the TCBs are accessed in the right way. The system would go wrong if, for instance, a
thread erased the context data of another by mistake, or put adead thread back into the
ready thread queue.

To guarantee the safety of the scheduling process, we must fulfill two requirements:

(1) No thread can incorrectly modify the context data in TCBs.

4

luckywangwang
高亮

luckywangwang
下划线

luckywangwang
打字机文本
Thread above the line can't modify TCB

ThreadA ThreadB
{[A] ∗ 〈B〉 ∗ next 7→ }
next = B;

{[A] ∗ 〈B〉 ∗ next 7→ B}
cswitch(A, next);

{[A] ∗ 〈B〉 ∗ next 7→ A}

/* coming back */
{[B] ∗ 〈A〉 ∗ next 7→ B}
next = A;
cswitch(A, next);

{[B] ∗ 〈A〉 ∗ next 7→ }

GINV, {CThrdA ∗ RThrdB}

[A] ∗ 〈B〉 ∗ next 7→ B

〈A〉 ∗ [B] ∗ next 7→ A

Fig. 3. Abstract thread res. vs. concrete thread res.

(2) The scheduler should know the status of each thread in thethread queues and decide
which to run next.

To satisfy the requirement (1), some previous work [3,7] adopts a two-layer-based
approach and protects the TCBs throughabstraction, where the TCBs are simply hid-
den from kernel threads and become inaccessible. This approach can be used to verify
schedulers of pattern (I), for which we show the abstractionline in Fig. 2 (a). Threads
above the line cannot modify TCBs, while the scheduler is below this line and has full
accesses to them. The lower-layer scheduler provides an abstract interface to the veri-
fication of concurrent thread code at the upper layer. Since it modifies the TCBs in the
scheduling time only, we can view the scheduler as a sequential function which does not
belong to any thread and can be verified by a conventional Hoare-style logic. However,
this approach cannot verify the other two patterns, nor it fulfills the requirement (2) for
concurrent schedulers, where the TCBs are manipulated concurrently (not sequentially
as in pattern (I)) and should be known by threads. That is, we cannot completely hide
the TCBs from the upper-layer concurrent threads for patterns (II) and (III).

2.3 Our approach

If we inspect the TCB data carefully, we can see only a small part of the data is crucial
to thread behaviors and cannot be accessed concurrently. Itis unnecessary to access it
concurrently either. The data includes the machine contextdata and the stack location.
We call themsafety-criticalvalues. Some values can be modified concurrently, but the
correctness of those is still important to the safety of the kernel,e.g., the pointers used to
organize thread queues and the status field belong to this kind of values. Other values of
TCBs have nothing to do with the safety of the kernel and can bemodified concurrently
definitely,e.g.,the name of a thread or debug information.

Lowering the abstraction level.To protect the safety critical part of TCBs, we lower
the abstraction line, as shown in Fig. 2 (b). In our framework, the safety-critical data of
TCBs is under the abstraction line and hidden from threads. The corresponding oper-
ations such as context saving, loading and switching are abstracted away from threads
too, with only interfaces exposed to the upper layer. The other part of TCBs are lifted
above this line, which can be accessed by concurrent threads.

5

luckywangwang
高亮

luckywangwang
下划线

luckywangwang
打字机文本

luckywangwang
打字机文本
	

luckywangwang
下划线

luckywangwang
下划线

Building abstract threads.We still need to ensure the concurrent accesses of non-
safety-critical TCB data are correct. For instance, we cannot allow a dead thread to
be put onto a ready thread queue. To address this issue, we build abstract threads to
carry information of threads from TCBs to guide modifications by each other. In Fig. 3,
we use the notation[t] to specify the running thread, and the notation〈t〉, for a ready
thread. Heret is the identifier of the thread. With the knowledge about the existence of
a ready threadB pointed bynext (i.e., 〈B〉), we know it is safe to switch to it via the
operationcswitch(A,next). Since abstract threads can be described in specifications,
it allows us to write more intuitive and readable specifications for kernel code.

Treating abstract threads as resources.Like heap resources, abstract thread resources
can be either local or shared. We can doownership transferson thread resources. When
context switches, one thread will transfer some of the abstract thread resources (shared)
along with the shared memory to the next thread. As shown in Fig. 3, when thread A
context switches to thread B, the notation[A] will be changed to〈A〉 after context saving;
〈A〉 and〈B〉 are transferred to the thread B along with the shared memory resourcenext;
then〈B〉 will be changed to[B] after context loading. With transferred thread resources,
threadB will know there is a ready threadA to switch to. Therefore, by treating abstract
threads as resources, we find a simple and natural way to specify and reason about
context switches. We design a proof system similar to CSL formodular verification
with the support of ownership transfers on thread resources.

Defining concrete thread resources.To establish the soundness of our proof system,
we must ensure that the abstract threads can be reified by realconcrete threads. The
concrete representation of abstract threads, including stack, TCBsetc., can be defined
from a global point of view. In Fig. 3, suppose that thread A isrunning, we ensure
that there are two blocks of resources in the system. One of them is the running thread
CThrdA and the other is a ready threadRThrdB. They correspond to the abstract threads
[A] and〈B〉 in the assertions of thread A. We use the concrete thread resources to specify
the global invariant of the machine, which allows us to provethe soundness of our proof
system.

In summary, we propose a new verification framework based on the ideas above,
which allows us to verify concurrent thread management of kernels in a modular way.

3 Machine model

In this section, we define a two-layer machine model. The physical machine we use is
similar to realistic hardware, where no concept of thread exists. Based on it, we define
an abstract machine with logicalabstract threads, whose meta-data is abstracted into
a thread pool. Moreover, the operation of context switch is abstracted as a primitive
abstract instruction.

3.1 Meta language

First of all, a mechanized meta-language is required to formalize all the concepts in
this paper, such as machine models, programs, specifications, inference rules, theorems

6

luckywangwang
线条

luckywangwang
线条

luckywangwang
线条

luckywangwang
下划线

luckywangwang
下划线

luckywangwang
线条

luckywangwang
打字机文本
physical machine (no concept of thread)

luckywangwang
打字机文本
abstract machine (logical abstract threads)

(PhyMach) W ::= (C,M,R,pc)

(PhyCode) C ::= {f : i}∗

(PhyMem) M ::= {l : w}∗ (l=4n)

(PhyRegFile) R ::= {r : w}∗

(Register) r ::= v0 | a0 | a1 | a2 | sp | ra

(Instruction) i ::= add rd, rs | addi rd, w

| mov rd, rs | movi rd, w

| lw rt , w(rs) | sw rt , w(rs)

| jmp f | call f | ret

| subi rd, w | bz rt , f

Fig. 4. Physical machine model

and proofs. The meta-language we use is the calculus of inductive constructions (CiC),
which is supported by the proof assistant Coq.

Term A,B ::= Set | Prop | Type

| X | λX : A.B | A B | A→ B | A∧ B | A ∨ B | True | False

| ∀X : A.B | ∃X : A.B | inductive def.| · · ·

CiC is a typed lambda calculus, and its syntax follows the convention of common
lambda calculi. For example,A → B represents function spaces. It also means logical
implication whenA andB have sortProp. In addition,Prop is the universe of all propo-
sitions,Set is the universe of all data sets, andType is the (stratified) universe of all
terms.

3.2 Physical machine

The formal definition of the physical machine is shown in Fig.4. A physical machine
configurationW consists of a code blockC, a mutable memoryM, a register fileR, a
program counterpc. The simplified machine has 6 general registers. The register v0 is
used for passing the return-value of functions;a0,a1,a2 are used for passing arguments.
The registersp always points to the top of stack, growing downwards. The registerra
is used for storing the return address of functions. The codeblockC is a mapping from
code labelsf to instructionsi. Some common instructions are defined to write programs
in this paper, including arithmetic, memory instructions for loading and storing values,
jump and function call/ret instructions. We assume that thelength of every instruction
is equal to one,i.e., if an instruction is atf, the next instruction will be atf+1. For
simplicity, we omit many realistic hardware details,e.g., address alignment and bits-
arithmetic.

For all kinds of partial mappings, we use⊎ to denote the disjoint union of two
mappings, and use the notation likeR{r : w} to denote the updating of a mapping .

We use a relationW 7−→W′ to specify the operational semantics.

7

luckywangwang
打字机文本
no concept of thread

(AbsMach) W ::= (C,S,pc)

(State) S ::= (M,R,P)

(AbsCode) C ::= {f : c}∗

(Mem) M ::= {l : w}∗

(RegFile) R ::= {r : w}∗

(TID) t ::= w

(Pool) P ::= {t : T}∗

(Thrd) T ::= run | (rdy,R)

(AbsInstr) c ::= cswitch | i

Fig. 5. Abstract machine model

C(pc)=i (M,R,pc)
i

→֒ (M′,R′,pc′)

(C,M,R,pc) 7−→ (C,M′,R′,pc′)

where the state transition relation(M,R,pc)
i

→֒ (M′,R′,pc′) is defined in Fig. 6.

3.3 Abstract machine

The abstract machine is shown in Fig. 5 (right side), where threads are introduced at
this level. It is more intuitive to build a proof system (Sec.4) to verify concurrent
kernel code at this level. A abstract machine configurationW is a triple of a read-only
code blockC, a mutable machine stateS, and a program counterpc. The code block
of the abstract machine is a partial mapping from labelsf to abstract instructionsc. A
machine stateS consists of a memory blockM, a register fileR and a thread poolP. A
memory block is a partial mapping from memory addressesl to machine wordsw. A
thread poolP is a partial mapping from thread IDst to abstract threadsT. Each abstract
thread has a tag specifying its status, which is either running (run) or ready (rdy). Each
ready thread has a copy of saved register file as its machine context data. The abstract
instructions include an abstract operation of context switch (cswitch) and other physical
machine instructions defined on the left. We model the operational semantics using the
step transition relationW 7−→W′ defined in Fig. 8. In the physical machine, this abstract
instruction can be implemented using normal machine instructions.

cswitch:

sw ra, 0(a0) | lw ra, 0(a1)

sw v0, 4(a0) | lw v0, 4(a1)

sw a0, 8(a0) | lw a0, 8(a1)

sw a1, 12(a0) | lw a2, 16(a1)

sw a2, 16(a0) | lw sp, 20(a1)

sw sp, 20(a0) | lw a1, 12(a1)

| ret

The machine context, a register file, can be defined as the structure as below:

8

luckywangwang
下划线

luckywangwang
下划线

(M,R,pc)
i

→֒ (M′,R′,pc′)

if i= then

add rd, rs M′=M ∧ R′=R{rd : R(rd)+R(rs)} ∧ pc′=pc+1

addi rd, w M′=M ∧ R′=R{rd : R(rd)+w} ∧ pc′=pc+1

sub rd, rs M′=M ∧ R′=R{rd : R(rd)−R(rs)} ∧ pc′=pc+1

subi rd, w M′=M ∧ R′=R{rd : R(rd)−w} ∧ pc′=pc+1

mov rd, rs M′=M ∧ R′=R{rd : R(rs)} ∧ pc′=pc+1

movi rd, w M′=M ∧ R′=R{rd : w} ∧ pc′=pc+1

lw rt , w(rs) M′=M ∧ R′=R{rt : M(R(rs)+w)} ∧ pc′=pc+1

sw rt , w(rs) M′=M{(R(rs)+w) : R(rt)} ∧ R′=R ∧ pc′=pc+1

call f M
′=M ∧ R

′=R{ra : pc+1} ∧ pc′=f

jmp f M
′=M ∧ R

′=R ∧ pc′=f

ret M
′=M ∧ R

′=R ∧ pc′=R(ra)

bz rt , f M′=M ∧ R′=R ∧ pc′=f if R(rt)=0

M′=M ∧ R′=R ∧ pc′=pc+1 if R(rt) 6= 0

Fig. 6. Operational semantics of physical machine

struct context {

int ra; int v0;

int a0; int a1;

int a2; int sp;

};

The abstract instructioncswitch requires two thread IDs passed as arguments ina0 and
a1, one of which is tagged byrun and the other is taged byrdy in the thread pool. After
cswitch, the two abstract threads exchange tags, and the control of processor is passed
from the old thread to the new one. The registers of old threadare saved in the source
abstract thread and the registers in the destination threadare loaded into machine state.
Except forcswitch, the state transitions of other instructions are similar tothose of the
physical machine.

3.4 Machine translation

In our proof system, once a program is proved safe at the abstract machine level, it
should be proved safe as well at the physical machine level. We define a relation be-
tween abstract machine with physical machine ,W ⇓W in Fig. 9. . A code block of the
abstract machine is translated to a code block at the physical level by the replacing of
cswitch with a function call to the code of implementation of contextswitch,Ccs. A
thread poolP is translated into a block of memory with the context data of all threads,
each of which is specified bymc(t,R). The whole memory of the physical machine con-
sists of two parts: the memory translated fromP and the memory translated fromM.
The translations ofM andR are straightforward.

We give a formal definition of the safety property:

9

luckywangwang
高亮

(AbsMach) W ::= (C,S,pc)

(State) S ::= (M,R,P)

(AbsCode) C ::= {f : c}∗

(Mem) M ::= {l : w}∗

(RegFile) R ::= {r : w}∗

(TID) t ::= w

(Pool) P ::= {t : T}∗

(Thrd) T ::= run | (rdy,R)

(AbsInstr) c ::= cswitch | i

Fig. 7. Definition of abstract machine

((M,R,P),pc)
c

→֒ ((M′,R′,P′),pc′)

if c= then

i ((M,R),pc)
i

→֒ ((M′,R′),pc′) ∧ P=P′

cswitch ∃R′′,P′′ .M=M′ ∧ R′′=R{ra : pc+1} ∧ t=R(a0)
∧ t ′=R(a1) ∧ pc′=R′(ra)

∧P ={t : run, t ′ : (rdy,R′)}⊎P′′

∧P′={t : (rdy,R′′), t ′ : run}⊎P′′

RandR′ is complete.

((M,R),pc)
i

→֒ ((M′,R′),pc′)

if i= then
add rd, rs M′=M ∧ R′=R{rd : R(rd)+R(rs)} ∧ pc′=pc+1

addi rd, w M′=M ∧ R′=R{rd : R(rd)+w} ∧ pc′=pc+1

mov rd, rs M′=M ∧ R′=R{rd : R(rs)} ∧ pc′=pc+1

movi rd, w M′=M ∧ R′=R{R(rd) : w} ∧ pc′=pc+1

lw rt , w(rs) M′=M ∧ R′=R{rt : M(R(rs)+w)} ∧ pc′=pc+1

sw rt , w(rs) M′=M{(R(rs)+w) : R(rt)} ∧ R′=R∧ pc′=pc+1

call f M′=M ∧ R′=R{ra : pc+1} ∧ pc′=f

jmp f M′=M ∧ R′=R∧ pc′=f

ret M′=M ∧ R′=R∧ pc′=R(ra)

bz rt , f M′=M ∧ R′=R∧ pc′=f if R(rt)=0

M′=M ∧ R′=R∧ pc′=pc+1 if R(rt) 6= 0

C(pc)=c (S,pc)
c

→֒ (S′,pc′)

(C,S,pc) 7−→ (C,S′,pc′)

Fig. 8. Operational semantics of abstract machine (part)

10

∀f ∈ dom(C) .C(f) ⇓ C(f)

C ⇓ (C⊎Ccs)
i ⇓ i cswitch ⇓ call fcswitch

∀r .R(r)=R(r)

R⇓ R

∀l ∈ dom(M) .M(l)=M(l)

M ⇓M

P⇓M P′ ⇓M′

(P⊎P′) ⇓ (M⊎M′)

M=mc(t,R)

{t : (rdy,R)} ⇓M

∃R′ .M=mc(t,R′)

{t : (run)} ⇓M

C ⇓ C M ⇓M1 P⇓M2 R⇓ R M ⇓M1⊎M2

(C,(M,R,P),pc) ⇓ (C,M,R,pc)

wheremc(l,R) , {l : R(ra),l+4 :R(v0),l+8 :R(a0),

l+12 :R(a1),l+16 :R(a2),l+20 :R(sp)}

Fig. 9.Relation between abstract machine and physical machine

Safei(i+1,W) , (∃W′ .W 7−→W′) ∧ ∀W′ .W 7−→W′ → Safei(i,W′)

Safei(0,W) , True

Safe(W) , ∀ i .Safei(i,W)

Safei(i+1,W) , (∃W′ .W 7−→W′) ∧ ∀W′ .W 7−→W′ → Safei(i,W′)

Safei(0,W) , True

Safe(W) , ∀ i .Safei(i,W)

If a machine configuration is safe, it can run forever withoutgoing stuck.
The following lemma states that the operational semantics of physical machine is

deterministic. In other words, any execution trace is linear.

Lemma 1 (Deterministic physical machine).For any physical machine configuration
W, if there existsW′ andW′′ such thatW 7−→W′ andW 7−→W′′, then the two machine
configurations areW′=W′′.

Proof. By induction on the transition relation of physical machine. ✷

Here we prove that the implementation of context switch is consistent to the opera-
tion semantics ofcswitch defined in Fig. 8.

Lemma 2 (Mapping of context switch). If W = (C,S,pc), W, W ⇓ W, and C(pc) =

cswitch, if W can run one step toW′, thenW can also runn steps (n > 0) to some
W′ such thatW 7−→n W′ andW′ ⇓W′.

Proof. By the operational semantics of the instructioncswitch and the implementation
of context switch routine. ✷

Lemma 3 (Mapping of One Step).For any abstract machine configurationW and
physical machine configurationW, if they satisfies the translation relationW ⇓W, and
for anyW′ such thatW 7−→W′, then there must exists aW′ thatW 7−→∗ W′ andW′ ⇓W′.

11

luckywangwang
下划线

Proof. By induction on the operational semantics of the abstract machine. ✷

By the translation, we can prove that if the abstraction machine is safe, then its
counter-part of physical machine is also safe.

Theorem 1 (Safety Preservation).For any machine configurationW andW, if W ⇓W

andSafe(W) thenSafe(W).

Proof. Induction on step, and by Lemma 3. ✷

4 Proof system

In this section, we extend the assertion language of CSL to specify the thread resources,
and propose a small proof system supporting verify concurrent code with modification
of TCBs at the assembly level.

4.1 Assertion language and code specification

We usep andq as assertion variables, which are predicates over machine states. The
assertion constructs, adapted from separation logic [18],areshallowly embeddedin the
meta language , as shown in Fig. 10. The notation ofemp asserts an empty state, i.e.
all components are empty, where we use the notation{·} to denote an empty mapping.
The assertion of separation conjunctionp ∗ q specifies the stateS which can be split
into two disjoint parts, satisfyingp andq respectively. The separation implicationp−∗q
means that: if merged resources specified byp, the state will satisfyq. In our assertion
language, there are two special assertion constructs for abstract threads. One of them
is 〈t〉 specifying resources of a ready thread and the other is[t] specifying resources
of current running thread. Since threads are explicit resources in the abstract machine,
their machine context data (values in registers) are preserved across context switch.
Hence the resources of registers shouldn’t be shared. We explicitly mark a pure assertion
by ♯, which forbids an assertion specifying resources. An unarynotation (⋄ p) mark
an assertionp that only specifies shared resources but no thread local resources (e.g.,
registers). Registers are also treated as resources, andr 7→ w specifies a register with the
value ofw. The notationr1, . . . ,rn 7→ w1, . . . ,wn is a compact form for multiple registers.

We borrow the idea from SCAP [4] that a(p,g) pair is used to specify instructions
at assembly-level. The pre-conditionp describes the state before the first instruction of
an instruction sequence, while the actiong describes the actions done by the whole in-
struction sequence. In the proof system, each instruction is associated with a(p,g) pair,
whereg describes the actions from this instruction to aret instruction. For all instruc-
tions inC, all (p,g) pairs are put in a global mapping,Ψ, from labels to specifications.

(Assert) p,q ∈ State → Prop

(Action) g ∈ State → State → Prop

(Spec) Ψ ::= {f : (p,g)}∗

The specification form(p,g) is different from the traditional pre-condition and post-
condition, which are both assertions and related by auxiliary variables. We can still use
a notation to specify instructions in the traditional style,

12

emp , λ(M,R,P) .M={·} ∧ R={·} ∧ P={·}

true , λS. True

false , λS. False

p∧∧q , λS.(p S) ∧ (q S)

p∨∨q , λS.(p S) ∨ (q S)

∃∃ v. p , λS.∃v. p S

p ∗ q , λ(M,R,P) .∃M1,M2,R1,R2,P1,P2 .

M=M1⊎M2 ∧ R=R1⊎R2 ∧ P=P1⊎P2

∧ p (M1,R1,P1) ∧ q (M2,R2,P2)

p−∗q , λ(M,R,P) .∀M1,R1,P1,M′,R′,P′ .

(M′=M1⊎M ∧ R′=R1⊎R∧ P′=P1⊎P)

→ p (M1,R1,P1)→ q (M′,R′,P′)

♯p , λ(M,R,P) . p∧ M={·} ∧ R={·} ∧ P={·}

⋄ p , λ(M,R,P) . p (M,R,P) ∧ R={·}

l 7→ w , λ(M,R,P) .M={l : w} ∧ l 6= NULL ∧ R={·} ∧ P={·}

r 7→ w , λ(M,R,P) .R={r : w} ∧ M={·} ∧ P={·}

r 7→ , λ(M,R,P) .∃w .R={r : w} ∧ M={·} ∧ P={·}

r →֒ w , λ(M,R,P) .∃R′ .R={r : w}⊎R′

l 7→ , λ(M,R,P) .∃w .M={l : w} ∧ l 6= NULL ∧ R={·} ∧ P={·}

l →֒ w , λ(M,R,P) .∃M′ .M={l : w}⊎M′ ∧ l 6= NULL

[t] , λ(M,R,P) .P={t : run} ∧ M={·} ∧ R={·}

〈t〉 , λ(M,R,P) .P={t : (rdy,)} ∧ M={·} ∧ R={·}

r1, . . . ,rn 7→ w1, . . . ,wn , (r1 7→ w1) ∗ · · · ∗ (rn 7→ wn)

l 7→ (n) , (l 7→) ∗ (l+4 7→) ∗ · · · ∗ (l+4(n−1) 7→)

Fig. 10.Definition of assertion constructs

13

{

p

q

}(v1,...,vn)

, ((λS.∃v1, . . . ,vn .∃ p′ .(p(v1, . . . ,vn) ∗ p′) S),

(λS,S′ .∀ p′ .∀v1, . . . ,vn .(p(v1, . . . ,vn) ∗ p′) S→ (q(v1, . . . ,vn) ∗ p′) S′))

wherep is the pre-condition of instructions,q is the post-condition, andv1, . . . ,vn are
auxiliary variables occurring in the precondition and the postcondition. For example,
the action of an addition instructionaddi a0, 2 can be specified as follows:

{

a0 7→ v

a0 7→ v+2

}(v)

wherev is an auxiliary variable to relate the pre-condition and post-condition. Then the
g says that for anyv, if the state before the addition instruction satisfiesa0 7→ v, the state
after addition will satisfya0 7→ v+2. We define a binary operator for composing two
pairs into one.

(p,g)⊲ (p′,g′) , (λS. p S∧ (∀S′ .g S S′ → p′ S′),

∧λS,S′′ . p S→ (∃S′ .g S S′ ∧ g′ S′ S′′))

If an instruction sequence satisfies(p,g) and the following instruction sequence satis-
fies (p′,g′), then the composed instruction sequence would satisfy(p,g) ⊲ (p′,g′). The
weakening relation between two pairs is defined as below:

(p,g)⇒ (p′,g′) , ∀S. p S→ p′ S∧ (∀S′ .g′ S S′ → g S S′)

The relation implies that: the preconditionp is stronger thanp′ and the actiong is weaker
thang′. For example, two actions of additions can be bound into one and satisfy the
following weakening relation:

{

a0 7→ v

a0 7→ v+2

}(v)

⊲

{

a0 7→ v′

a0 7→ v′+3

}(v′)

⇒

{

a0 7→ v

a0 7→ v+5

}(v)

4.2 Invariant for shared resources

As mentioned previously, our proof system draws ideas of ownership transfer from
CSL. By defining invariants for shared resources, our proof system ensures safe opera-
tions of TCBs.

Different from original concurrent separation logic, our machine doesn’t support in-
deterministic concurrency. And since there is only one single processor in our machine
model and no interrupt support either, all threads in the machine run cooperatively. Ev-
ery running thread will obtain the ownership of shared resources. If one running thread
invokes context switch to another, the ownership of shared resources will be transferred
automatically.

Unlike the invariant in concurrent separation logic, the invariant of shared resources
defined in our proof system is parameterized by two thread IDs: I(ts, td). Briefly, the
invariant describes the shared resources before context switch with the direction from
the threadts to td. One of the benefits of parameters is that the invariant is thread-
specific.

14

luckywangwang
下划线

luckywangwang
下划线

Like the abstract invariantI in CSL, the invariantI(ts, td) is abstract and can be
instantiated to concrete definitions so as to verify variousprograms, if it satisfies a
requirement of beingprecise[18].

Precisely, the invariantI(ts, td) describes the shared resources when the context switch
invoked from the threadts to the threadtd, butexcluding the resources of the two threads.
Since the control flow from one thread to another isdeterministicby context switch, ev-
ery two threads may negotiate a particular invariant that isdifferent from pairs of other
threads. We can define different assertions (of shared resources) which depends on the
source and the destination thread related to context switch. This is quite different from
concurrent code at user-level, where every switch depends on unknown scheduling al-
gorithm.

4.3 Inference rules

The judgements of instruction in our proof system are of the following form: Ψ, I ⊢
{(p,g)} pc : c, whereΨ, I are implementation-specific. The judgement states that an
instruction sequence, started withc at the label ofpc and ended with aret, satisfies
specification(p,g) underΨ andI . The inference rules are shown in Fig. 11.

The rule of (CDHP) is for reasoning about the entire kernel code. The premise of
the rule says that each instruction atf in C should satisfy its corresponding specification
in Ψ, Ψ(f).

The rules of (ADD) , (ADDI) , (MOV) , (MOVI) , (LW) , and (SW) are for non-jump
machine instructions. The premises of them are similar to their operational semantics
and easy to understand. For example, in the rule of (ADD) , the premise says that the
specification(p,g) implies the action of theadd instruction composed with the spec-
ification of the next instruction,Ψ(pc+1). The action ofadd instruction is that if the
destination registerrd contains the value ofw1, and the source registerrs contains the
value ofw2, then after the instruction,rd will contain the sum ofw1 andw2, while rs

will keep unchanged.
Functions are reasoned with the rules of (CALL) and (RET) . The (CALL) rule

says that the specification(p,g) implies the action that is composed by (1) the action
of instructioncall, (2) the specification of thefunctioninvokedΨ(f), (3) the action of
instructionret, and (4) the specification of the next instructionΨ(pc+1). The (RET)
rule says that the specification(p,g) implies an empty action, which means the actions
of the current function should be fulfilled. Although, like SCAP, our proof system hasn’t
the frame rule explicitly, the proof system can still support local reasoning.

The most important rule in our proof system is the rule of context switch, (CSW) .
It states that the precondition ofcswitch should include the following resources:

– [t]: the current thread, whose thread-ID is stored in the registera0;
– 〈t ′〉: a ready thread, with IDt ′, which is stored in the registera1;
– ⋄ I(t, t ′): a part of resources without any resource of registers.

To the same threadt, after return from context switch, the thread will regain the control.
Thus, from a local point of view from one thread, the postcondition of context switch
should include:

15

– [t]: the current thread;
– registersa0 anda1 are unchanged;
– 〈t ′′〉: there exists an unknown threadt ′′ which just called context switch before the

threadt re-obtains the control;
– ⋄ I(t ′′, t): a part of the shared resources, which implies the directionof the last con-

text switch is fromt ′′ to t.

4.4 Invariant of global resources and soundness

Each abstract thread corresponds to one part of global resources representing the con-
crete resources allocated for this thread. For example, to an abstract thread〈t〉, there
exist resources of its TCB, stack, and private resources. Therefore, all resources can be
divided into parts and each of them is associated to one thread. The global invariant is
such a logical expression that describes the partition of all resources globally, defined in
Fig. 12. The invariant is the key for proving the soundness theorem of our proof system.

Continuation.First, for each thread, we define a predicateCont to specify its resources
and control flow, i.e. thecontinuationof this thread. The first parametern of this pred-
icate specifies the number of functions nested in the thread’s control flow. Ifn is equal
to zero, it means that the thread is running in the topmost function, which could be an
infinite loop and cannot return. If the numbern is greater than zero, the predicate says
that there is a specification(p,g) in Ψ at pc, such that the resources of the thread satis-
fies p; andg guarantees that the thread will continue to satisfyCont recursively after it
returns to the addressretaddr.

Running thread.The concrete resources of arunning threadare specified by a con-
tinuationCont with an additional condition, the running thread owns all registers. The
parameterpc points to the next instruction the thread is going to run. Here we use an
abbreviation⌊R⌋ to denote the resources of all registers, except that the value inra is of
no interest.

⌊R⌋ , (ra 7→) ∗ (v0 7→ R(v0)) ∗ (sp 7→ R(sp))

∗(a0 7→ R(a0)) ∗ (a1 7→ R(a1)) ∗ (a2 7→ R(a2))

Ready thread.For aready thread(or a runnable thread), its concrete resources are de-
fined by separation implication−∗ : if given (1) the resources of saved machine context
⌊R⌋, (2) the abstract resource of itself[t], (3) another ready threadt ′ and (4) shared re-
sources specified by⋄ I(t ′, t), the resources of the ready thread can be transformed into
the resources of a running thread. It thread ID is specified bythe second parameter of
RThrd, and the third parameter is the machine context data saved inits TCB. Please note
that the program counter of a ready thread is saved into the registerra.

16

∀f ∈ dom(C) . Ψ, I ⊢ {Ψ(f)}f : C(f)

Ψ, I ⊢C
(CDHP)

(p,g)⇒

{

(rd 7→ w1) ∗ (rs 7→ w2)

(rd 7→ w1+w2) ∗ (rs 7→ w2)

}(w1,w2)

⊲Ψ(pc+1)

Ψ, I ⊢ {(p,g)} pc : add rd, rs
(ADD)

(p,g)⇒

{

(rd 7→ w1)

(rd 7→ w1+w)

}(w1)

⊲Ψ(pc+1)

Ψ, I ⊢ {(p,g)} pc : addi rd, w
(ADDI)

(p,g)⇒

{

(rd 7→ w1) ∗ (rs 7→ w2)

(rd 7→ w2) ∗ (rs 7→ w2)

}(w1,w2)

⊲Ψ(pc+1)

Ψ, I ⊢ {(p,g)} pc : mov rd, rs
(MOV)

(p,g)⇒

{

(rd 7→)

(rd 7→ w)

}

⊲Ψ(pc+1)

Ψ, I ⊢ {p} pc : movi rd, w {g}
(MOVI)

(p,g)⇒

{

(rt 7→) ∗ (rs+w 7→ w1)

(rt 7→ w1) ∗ (rs+w 7→ w1)

}(w1)

⊲Ψ(pc+1)

Ψ, I ⊢ {(p,g)} pc : lw rt , w(rs)
(LW)

(p,g)⇒

{

(rt 7→ w1) ∗ (rs+w 7→)

(rt 7→ w1) ∗ (rs+w 7→ w1)

}(w1)

⊲Ψ(pc+1)

Ψ, I ⊢ {(p,g)} pc : sw rt , w(rs)
(SW)

(p,g)⇒

{

ra 7→

ra 7→ pc+1

}

⊲ (Ψ(f)⊲

{

ra 7→ pc+1

ra 7→

}

⊲Ψ(pc+1))

Ψ, I ⊢ {(p,g)} pc : call f
(CALL)

(p,g)⇒

{

emp

emp

}

Ψ, I ⊢ {(p,g)} pc : ret
(RET)

(p,g)⇒ Ψ(f)

Ψ, I ⊢ {(p,g)} pc : jmp f
(JMP)

(p∧∧(rt →֒ 0),g)⇒ Ψ(f) (p∧∧(rt →֒ w) ∗ ♯(w 6= 0),g)⇒ Ψ(pc+1)

Ψ, I ⊢ {(p,g)} pc : bz rt , f
(BZ)

(p,g)⇒

{

[t] ∗ (a0,a1,ra 7→ t, t ′,) ∗ 〈t ′〉 ∗ ⋄ I(t, t ′)

[t] ∗ (a0,a1,ra 7→ t, t ′,) ∗ ∃∃ t ′′ .〈t ′′〉 ∗ ⋄ I(t ′′, t)

}(t,t ′)

⊲Ψ(pc+1)

Ψ, I ⊢ {(p,g)} pc : cswitch
(CSW)

Fig. 11. Inference rules selected)

17

Cont(n+1,Ψ,pc) , λS.Ψ(pc)=(p,g) ∧ (p S)

∧(∀S′ .g S S′ → (∃∃ retaddr.(ra →֒ f)∧∧Cont(n,Ψ, retaddr)) S′)

Cont(0,Ψ,pc) , λS.Ψ(pc)=(p,g) ∧ (p S) ∧ (∀S′ .g S S′ → False)

CThrd(Ψ, t,pc) , ∃∃ n.Cont(n,Ψ,pc)∧∧([t] ∗ ∃∃ R.⌊R⌋ ∗ true)

RThrd(Ψ, t,R) , ⌊R⌋ ∗ [t] ∗ ∃∃ t ′ .〈t ′〉 ∗ ⋄ I(t ′, t) −∗CThrd(Ψ, t,R(ra))

GINV(Ψ,P,pc) , CThrd(Ψ, t,pc) ∗ RThrd(Ψ, t0,R0) ∗ · · · ∗ RThrd(Ψ, tn,Rn)

whereP={t : run, t0 : (rdy,R0), . . . , tn : (rdy,Rn)}

Fig. 12.Concrete threads and the global invariant

Invariant of global resources.The whole machine state can be partitioned , and each
of parts is owned by one thread, which is either running or ready. Thus, the global
invariantGINV is defined in the form of separation conjunction byCThrd and RThrd.
The structure ofGINV is isomorphic to the thread poolP: one abstract running thread
is mapped to resources specified by oneCThrd; one abstract ready thread is mapped to
resources specified by oneRThrd. Note thatGINV requires that there be one and only
one running abstract thread, since the physical machine hasonly one single processor.
Our proof system ensures that the machine state always satisfies the global invariant,
(GINV(Ψ,P,pc) (M,R,P)).

4.5 Soundness

The soundness property of our proof system states that any program that is well-formed
in our proof system will run safely on the abstract machine. The property can be proved
by the global invariantGINV, which always holds through machine execution. We can
first prove that if every machine configuration satisfiesGINV, it can run forward for
one step. And we can also prove that if a machine configuration(satisfyingGINV) can
proceed, the next machine configuration will also satisfyGINV. Hence by the invari-
antGINV, the soundness theorem of our proof system can be proved. Theproof of the
soundness theorem has been formalized in Coq [8].

Lemma 4 (Context switch over shared invariant).For any machine configuration
(C,(M,R,P),pc), and kernel specificationΨ, Ψ, I , I ⊢C, state satisfies the global invariant

(M,R,P) ⌊R⌋ ∗ [t] ∗ 〈t ′〉 ∗ I(t, t ′) ∗ p′

then after machine run a context switch(M,R,P)
cswitch

→֒ (M′,R′,P′), the machine state
will satisfy

(M′,R′,P′) ⌊R′⌋ ∗ [t ′] ∗ I(t ′) ∗ p′,

whereR(a0)=t andR(a1)=t ′.

Proof. Immediate. ✷

Lemma 5 (Context switch over global invariant). For any machine configuration
(C,(M,R,P),pc), and kernel specificationΨ, Ψ, I , I ⊢C, state satisfies the global invariant

18

luckywangwang
下划线

luckywangwang
下划线

luckywangwang
打字机文本
a logical partition

(M,R,P) GINV(Ψ,P,pc),

if machine can run a context switch command,(M,R,P)
cswitch

→֒ (M′,R′,P′) then the state
after the command still satisfies the global invariant:

(M′,R′,P′) GINV(Ψ,P′,pc).

Proof. Immediate. ✷

Theorem 2 (Progress).For any machine configuration(C,S,pc), if Ψ, I , I ⊢C and(C,S,pc)
GINV(Ψ,P,pc), then the machine can go forward for one step:(C,S,pc) 7−→ (C,S′,pc′),
whereS=(M,R,P).

Proof. ✷

Theorem 3 (Preservation).For any machine configuration(C,S,pc), whose code is
verifiedΨ, I , I ⊢C and state satisfies the global invariant(C,S,pc) GINV(Ψ,P,pc), if it
steps to(C,S,pc) 7−→ (C,S′,pc′), then the the new state also satisfies the global invariant:
(C,S,pc′) GINV(Ψ,P′,pc′), whereS=(M,R,P) andS′=(M′,R′,P′).

Proof. ✷

Theorem 4 (Soundness).For any machine configuration ,(C,(M,R,P),pc), if its code
is verified,Ψ, I ⊢C, and its state satisfies the global invariant,(M,R,P) GINV(Ψ,P,pc),
then it is safe to run.

Proof. By Lemma 2 and Lemma 3.

5 Verification cases

In this section, we show how to use the proof system to verify two schedulers of pattern
(II) and (III) shown in Fig. 1. The examples are small and simple to help readers under-
stand our framework easily. Still, they can be extended to realistic ones if we improve
our verification framework on a more realistic machine modeland enrich inference
rules as well.

5.1 Scheduler as function

We explain the code in C style here, but verify it at assembly-level. This pattern of
scheduling is modeled from code scheduler of many realisticOS kernels (FreeBSD,
Linux, RTEMSetc.). Since we only implement thread scheduling, we define the struc-
ture of TCBs as simple as possible. It only contains machine context and two pointers
for organizing the thread queue. Please note that thread IDsare the memory addresses
of TCBs.

The scheduler function follows the process discussed in Sec. 2. The functionsdeq()
andenq() are used to remove and insert nodes in thread queues. The maintask of the
scheduler is choosing a candidate from the thread queue and doing context switch from
the current thread to the candidate. There are two global variables,cur andrq. The

19

variablecur points the TCB of the running thread; while the variablerq points to the
thread queue containing TCBs of all other threads. Supposeschedule p2() is invoked
by one threadtA, it firstly records the value of variablecur to a local variableold before
modifying cur. Then it picks anewthread control block from the ready thread queue
by calling functiondeq(). If the queue is empty, this function will return immediately.
Otherwise, it puts the TCB of the running thread into the thread queue by callingenq(),
and modifiescur to thenewthread (tB). Next, the function does context switch from the
current running threadtA to the new threadtB. From then on, the threadtA becomes
ready and then waits for the next cycle, andtB becomes a running thread. After a while,
if another thread (tC) happens to choose the threadtA as thenextthread to context switch,
the threadtA will re-obtain the control fromtC. Finally, the function returns back to the
caller. It’s possible that an invocation of context switch in tA won’t return if tA is never
chosen.

struct tcb { | void schedule_p2()

struct context ctxt; | {

struct tcb *prev; | struct tcb *old, *new;

struct tcb *next; | old = cur;

}; | new = deq(&rq);

| if (new == NULL) return;

| enq(&rq, old);

| cur = new;

struct tcb *rq; | cswitch(old,new);

struct tcb *cur; | return;

| }

We define the following notations to specify the structure ofTCB:

t
prev
7−→ p , t+OFF PREV 7→ p

t
next
7−→ q , t+OFF NEXT 7→ q

ptcb(t) , (t
prev
7−→) ∗ (t

next
7−→)

The notationt next
7−→ p andt

prev
7−→ q specify the memory cell of two pointers of the TCB.

The notationptcb(t) specifies a part of TCB including the fields ofnext andprev. We
use the predicateRQ(q) to describe a double linked list as a thread queue pointed byq.
Please note that the resources specified byRQq include the ready thread resources〈t〉
inside. Thus we can know that every node in the thread queue isexactly a TCB of a
readythread.

RQseg(t ′, t) , 〈t〉 ∗ (t
prev
7−→ t ′) ∗ ∃∃ t ′′ .(t

next
7−→ t ′′) ∗ RQseg(t, t ′′)

RQseg(t ′, t) , ♯(t=NULL)

RQ(rq) , ∃∃ t .(rq 7→ t) ∗ RQseg(NULL, t)

The specification ofschedule p2() is shown below:

20

{

[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ RQ(rq) ∗ (ra 7→ ret) ∗ K(bp,20) ∗ (v0,a0,a1 7→)

[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ RQ(rq) ∗ (ra 7→ ret) ∗ K(bp,20) ∗ (v0,a0,a1 7→)

}(t,ret,bp)

The precondition states the following resources:

– [t]: the current thread resource with thread IDt;
– ptcb(t): the two pointers in TCB of current threadt;
– (cur 7→ t): the global variablecur pointing to current thread;
– RQ(rq): a ready thread which includes ready thread resources;
– (ra 7→ ret): the registerra containing the return address;
– K(bp,20): the stack registersp and a block of memory as an unused stack, with base

address ofbp and the size of20;
– (v0,a0,a1,a2 7→): all of other registers used for the function.

The postcondition of the schedule function is same with the precondition. Here we
use a notationK(bp,n,w :: w′ :: · · ·) to describe a stack frame. The first parameterbp is
the base address of a stack frame. The second parametern is the size of unused space
(number of words). Please remember that all stacks grow downwards in our machine
model. And the third parameter is a list of words, representing the values on stack top
down, that is, the leftmost value in the list is the topmost value in the stack frame. If the
stack frame is empty, we omit the third parameter. The definition of K is given below:

K(bp,n,w0 :: w1 :: . . . :: wm) , ∃∃ sp.(sp 7→ sp) ∗ ♯(sp=bp+4n)

∗(bp 7→ (n)) ∗ (sp 7→ w0) ∗ (sp+4 7→ w1) ∗ · · · ∗ (sp+4m 7→ wm)

K(bp,n) , K(bp,n, ·)

Note that the stack registersp is included in theK(· · ·).
The two auxiliary functions (enq() anddeq()) are used in the schedule function for

manipulating thread queues. Their specifications are defined below:

RQ(q) ∗ ptcb(t) ∗ (a0,a1,a2,v0,ra 7→ q, t,w, , ret) ∗ K(bp,10)

(〈t〉 −∗RQ(q)) ∗ (a0,a1,a2,v0 7→ q, t,w, ret) ∗ (v0 7→ 0) ∗ K(bp,10)

(q,t,w,ret)

RQ(q) ∗ (a0,a1,a2,ra 7→ q,w1,w2, ret) ∗ K(bp,10) ∗ (v0 7→)

RQ(q) ∗ (a0,a1,a2,ra 7→ q,w1,w2, ret) ∗ K(bp,10)
∗((∃∃ t .(v0 7→ t) ∗ 〈t〉 ∗ ptcb(t))∨∨(v0 7→ 0))

(q,w1,w2,ret)

The abstract invariantI is instantiated to a concrete definition specifying the shared
resourcesbeforeandaftercontext switch for this implementation of scheduler.

I(t, t ′) , ptcb(t ′) ∗ (cur 7→ t ′) ∗ (〈t〉 −∗RQ(rq))

The invariantI(t, t ′) is to specify shared resourcesexcludingresources oft andt ′, but
including the following resources:

– ptcb(t ′): the two pointers (prev) and (next) of TCB of the new threadt ′;
– cur 7→ t ′: the global variablecur, pointing tot ′;
– 〈t〉 −∗RQ(rq): the thread queue, being excluded the resource of〈t〉, because the

current thread is still not a ready thread before context switch.

21

schedule p2:

{[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ RQ(rq) ∗ (a0,a1,v0,ra 7→ , , , ret) ∗ K(bp,20)}

subi sp, 12

sw ra, 8(sp)

movi a0, cur

lw v0, 0(a0)

sw v0, 0(sp)

{[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ RQ(rq) ∗ K(bp,17, t :: :: ret)
∗(a0,a1,v0,ra 7→ cur, , t,)}

movi a0, rq

call deq

bz v0, Ls ret

{[t] ∗ ptcb(t) ∗ 〈t ′〉 ∗ ptcb(t ′) ∗ RQ(rq) ∗ K(bp,17, t :: :: ret) ∗ (cur 7→ t)
∗(a0,a1,v0,ra 7→ rq, , t ′,)}

sw v0, 4(sp)

lw a1, 0(sp)

call enq

{[t] ∗ 〈t ′〉 ∗ ptcb(t ′) ∗ (〈t〉 −∗RQ(rq)) ∗ K(bp,17, t :: t ′ :: ret) ∗ (cur 7→ t)
∗(a0,a1,v0,ra 7→ rq, t,0,)}

lw a1, 4(sp)

movi a0, cur

sw a1, 0(a0)

lw a0, 0(sp)

{[t] ∗ 〈t ′〉 ∗ (〈t〉 −∗RQ(rq)) ∗ ptcb(t ′) ∗ K(bp,17, t :: t ′ :: ret) ∗ (cur 7→ t ′)
∗(a0,a1,v0,ra 7→ t, t ′,0,)}

cswitch

{[t] ∗ ptcb(t) ∗ ∃∃ t ′′ .〈t ′′〉 ∗ (〈t ′′〉 −∗RQ(rq)) ∗ K(bp,17, t :: :: ret) ∗ (cur 7→ t)
∗(a0,a1,v0,ra 7→ t, t ′, ,)}

Ls ret:

lw ra, 8(sp)

addi sp, 12

{[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ RQ(rq) ∗ (a0,a1,v0,ra 7→ , , , ret) ∗ K(bp,20)}

ret

Fig. 13.Verification ofschedule p2()

22

5.2 Scheduler as a separated thread

A scheduler in the pattern (III) does scheduling jobs in a particular thread. This thread
is sometimes called processor-layer thread [19], which means that there will be one
processor-layer thread for each processor in a multi-core architecture. The advantage of
adding this scheduler thread is that this special thread caneasily clean up dead threads
who cannot deallocate its own stack since it can not call a function on a stack that is
has been released [19], or implement multiple schedulers inone system [5]. A global
variablesched is added to represent the TCB of the separate thread. In this pattern of
scheduler, separate thread do the scheduling job in a infinite loop. A stub function is
neededschedule p3() for being invoked by other threads.

struct tcb sched; | schedth()

struct tcb *cur, *rq; | {

| while(1){

schedule_p3() | cur = deq(&rq);

{ | cswitch(&sched, cur);

cswitch(cur,&sched); | enq(&rq, cur);

return; | }

} | }

We define the specification ofschedule p3() function below:

[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ 〈sched〉 ∗ (a0,a1,ra 7→ , , ret) ∗ K(bp,10)

[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ 〈sched〉 ∗ (a0,a1,ra 7→ , , ret) ∗ K(bp,10)

(t,bp,ret)

Both the precondition and the postcondition of the schedulefunction schedule p3()

state the following resources:

– [t]: the current thread with thread IDt;
– ptcb(t): the two pointers of TCB of current threadt;
– (cur 7→ t): the global variablecur is pointing to current thread;
– (ra 7→ ret): the register containing the return address;
– K(bp,10): stack register and a block of memory as a empty stack, with base address

of bp and size of10;
– (a0,a1 7→): two registers;
– 〈sched〉: the thread resources of the separate thread for scheduling.

Differing from the specification ofschedule p2(), the schedule function in this imple-
mentation doesn’t own the thread queue. However, since the operations over the thread
queue are put into a separated thread, the ownership of the thread queue is owned by the
scheduler thread〈sched〉 only. The specification ofschedth() function is shown below:

{

[sched] ∗ (cur 7→) ∗ RQ(rq) ∗ (a0,a1,a2,v0,ra 7→ , , , ,) ∗ K(bp,10)

false

}(bp)

The precondition of the functionschedth running in the separate thread states the fol-
lowing resources:

23

schedth:

{[sched] ∗ (cur 7→) ∗ RQ(rq) ∗ K(bp,10) ∗ (a0,a1,v0,ra 7→ , , ,)}

movi a0, rq

call deq

bz v0, schedth

{[sched] ∗ (cur 7→) ∗ 〈t ′〉 ∗ ptcb(t ′) ∗ RQ(rq) ∗ K(bp,10)
∗(a0,a1,v0,ra 7→ rq, , t ′,)}

movi a2, cur

sw v0, 0(a2)

mov a1, v0

lw a0, sched

{[sched] ∗ 〈t ′〉 ∗ (cur 7→ t ′) ∗ ptcb(t ′) ∗ K(bp,10)
∗RQ(rq) ∗ (a0,a1,v0,ra 7→ sched, t ′, ,)}

cswitch

{[sched] ∗ ∃∃ t ′′ .〈t ′′〉 ∗ ptcb(t ′′) ∗ (cur 7→ t ′′) ∗ K(bp,10)
∗RQ(rq) ∗ (a0,a1,v0,ra 7→ sched, , ,)}

movi a0, rq

lw a1, 0(a2)

{[sched] ∗ ∃∃ t ′′ .〈t ′′〉 ∗ ptcb(t ′′) ∗ (cur 7→ t ′′) ∗ RQ(rq) ∗ K(bp,10)
∗(a0 7→ rq) ∗ (a1 7→ t ′) ∗ (v0,ra 7→)}

call enq

{[sched] ∗ (cur 7→) ∗ RQ(rq) ∗ K(bp,10)
∗(v0 7→ 0) ∗ (a0 7→ rq) ∗ (a1 7→ t ′) ∗ (ra 7→)}

jmp schedth

schedule p3:

{[t] ∗ ptcb(t) ∗ 〈sched〉 ∗ (cur 7→ t) ∗ K(bp,10) ∗ (a0,a1,ra 7→ , , ret)}

subi sp, 4

sw ra, 0(sp)

movi a1, cur

lw a0, 0(a1)

movi a1, sched

{[t] ∗ ptcb(t) ∗ 〈sched〉 ∗ (cur 7→ t) ∗ K(bp,9, ret) ∗ (a0,a1,ra 7→ t,sched, ret)}

cswitch

{[t] ∗ ptcb(t) ∗ 〈sched〉 ∗ (cur 7→ t) ∗ K(bp,9, ret) ∗ (a0,a1,ra 7→ , , ret)}

lw ra, 0(sp)

addi sp, 4

{[t] ∗ ptcb(t) ∗ 〈sched〉 ∗ (cur 7→ t) ∗ K(bp,10) ∗ (a0,a1,ra 7→ , , ret)}

ret

Fig. 14.Verification ofschedule p3()

24

– [sched]: the current thread with thread IDt;
– (cur 7→): the global variablecur pointing to current thread;
– (ra 7→ ret): the register containing the return address;
– K(bp,10): the stack registersp and a block of memory as empty stack frame, with

base address ofbp and the size of20;
– (v0,a0,a1,a2,ra 7→): other registers;

In this version, since the ready thread queue is only operated by the scheduler thread, it
needn’t to be shared by other threads. We define the invariantI as shown below:

I(t, t ′) , (♯(t ′=sched) ∗ (cur 7→ t) ∗ ptcb(t))∨∨(♯(t=sched) ∗ (cur 7→ t ′) ∗ ptcb(t ′))

The definition ofI(t, t ′) is defined as cases analysis on the direction of context switch:
if the destination thread is the scheduler thread,I(t, t ′) requires that the value incur be
equal to the ID of the source thread,t; or if the source thread is the scheduler thread,
I(t, t ′) requires that the value incur be equal to the ID of the destination thread.

6 Extension 1: interrupt and preemptive scheduling

In this section, we extend our proof system with interrupt support so as to verify the
implementation of preemptive scheduling, which was able tobe verified by previous
methods [3,7,20]. Comparing with them, however, our verification is simpler and easier
to follow.

We first give a piece of code which implements the scheduling pattern (I) as pre-
sented in Figure 1.

struct tcb {

struct context ctxt;

int pc;

struct tcb *prev;

struct tcb *next;

};

struct tcb *cur; | void intr_handler()

struct tcb *rq; | {

int istack[IKSIZE]; | struct tcb *new;

void f() | savectxt(cur);

{ | new = deq(rq);

struct tcb *t; | if (new != NULL) {

cli(); | enq(rq, cur);

t = cur; | cur = new;

sti(); | }

return; | loadctxt(cur);

} | }

In code above, there are two global variables,cur andrq, pointing to the TCB of cur-
rent thread and the ready thread queue. If an interrupt signal is triggered by the timer,
the processor will jump to run the interrupt service routine(ISR). Here the function
intr handler(), which does the job of scheduling, is setup to serve as an ISR.The
differences between this function with schedulers verifiedin the last section are that:

25

luckywangwang
下划线

(AbsMach) W ::= (C,S,pc)

(State) S ::= (H,R,F,P)

(Flag) F ::= {if : w}

(Pool) P ::= {t : T}∗

(TID) t ::= w | isr

(Thrd) T ::= run | (rdy,R,pc) | (intr, t)

(AbsInstr) c ::= i | iret | sti | cli

Fig. 15.Extension 1: abstract machine

– the context of the current thread is saved right after interrupt occurs;
– the context of the next thread is not loaded until the processor is going to return

from the ISR;
– the operations of the thread queue are manipulated inside the ISR.

Abstract machine.To support interrupt, we extend the machine model in Figure 15.
The state of machine is added with a flag registerF which is a singleton mapping from
the insterrupt flagif to a word, which could be (0 or 1). The flag register indicates
whether the interrupt is disabled (0 for disabled interrupt). We add a new type of abstract
thread to the thread pool,intr, which specifies the processor is running in the ISR. We
give a special thread IDisr to intr. Some new instructions are introduced for interrupt
support. The abstract instructioniret is used for returning from interrupt handler. The
instructionssti andcli are for turning-on or turning-off interrupt by modifying the
flag register.

Operational semantics.The extended operational semantics are shown in Figure 16.
Interrupts may occur when the flag register is equal to1, otherwise the interrupt

is disabled. If an interrupt occurrs, the program counter will be saved in TCB pointed
by a2, since processor will re-execute the instruction pointed by pc after return from
ISR. At the same time, the flag register is modified to zero to prevent the reentrance of
interrupts. The tag of the current thread is changed fromrun to rdy with saved register
file and the program counter. Moreover, an abstract threadisr is added to the thread pool
to indicate that the processor is running in the ISR.

If the ISR returns by the instructioniret, a new abstract threadt will be pointed by
a2, the register file and the program counter will be loaded fromTCB, the flag register
will be turned on, and the tag of the new thread will be changedfrom rdy to run. And
the abstract threadisr will be dismissed.

The binary relationW 7−→ W′ specifies the one-step operational semantics of the

machine. The relation(S,pc)
intr

→֒ (S′,pc′) specifies the state transition when an interrupt

occurrs; while the relation(S,pc)
iret

→֒ (S′,pc′) specifies the state transition when the pro-
cessor returns from the ISR. Note that these operational semantics are a little different
from ones of realistic hardware. In fact, the abstract operations include both operations
done by hardware and operations done by some built-in code. Readers may see the part
of machine translation in this section for more information.

26

luckywangwang
下划线

luckywangwang
下划线

C(pc)=c (S,pc)
c

→֒ (S′,pc′)

(C,S,pc) 7−→ (C,S′,pc′)

S.F(if)=1 (S,pc)
intr

→֒ (S′,pc′)

(C,S,pc) 7−→ (C,S′,pc′)

((M,R,F,P),pc)
intr

→֒ ((M′,R′,F′,P′),pc′)

M=M′ ∧ R′=R∧ t=R(a2) ∧ pc′=lintr ∧ F(if)=1 ∧ F′(if)=0

∧P ={t : run}⊎P′′

∧P′={t : (rdy,R,pc)}⊎{isr : intr}⊎P′′

((M,R,F,P),pc)
c

→֒ ((M′,R′,F′,P′),pc′)

if c= then

i ((M,R),pc)
i

→֒ ((M′,R′),pc′) ∧ P=P′ ∧ F=F′

iret M=M′ ∧ t=R(a2) ∧ pc′=pct ∧ F(if)=0 ∧ F′(if)=1

∧P ={t : (rdy,Rt ,pct)}⊎{isr : intr}⊎P′′

∧P′={t : run}⊎P′′

sti M=M′ ∧ R=R′ ∧ F(if)=0 ∧ F′(if)=1 ∧ P=P′

cli M=M′ ∧ R=R′ ∧ F(if)=1 ∧ F′(if)=0 ∧ P=P′

Fig. 16.Extension 1: operational semantics

Assertion language.Some new assertion constructs are needed. One of these is for
specifying the abstract thread of ISR,[[·]]. Its definition is straightforward and shown
below. The notationif 7→ b specifies the flag register, andif →֒ b specifies the flag
register and other uninteresting resources. We change the definition of ⋄ p here, which
states that a shared assertionp doesn’t specify any resource of general register or flag
register.

[[·]] , λ(M,R,F,P) .P={isr : intr} ∧ M=F=R={·}

if 7→ b , λ(M,R,F,P) .F={if : b} ∧ M=R=P={·}

if →֒ b , λ(M,R,F,P) .F={if : b}

⋄ p , λ(M,R,F,P) . p (M,R,F,P) ∧ R=F={·}

6.1 Inference rules

We extend our proof system with the following four rules for new instruction in Fig-
ure 17. The invariant of context switchJ(t) is different from the invariantI(t, t ′) in Sec-
tion 4. It has only one parametert indicating which thread the current ISR is going to
switch to.

The rule of (INTR) states that if interrupt is enabled before processor runs the in-
structioni, the thread should contain the following resources:

– [·]: the resource of the current thread,
– (a2 7→ t): the value of registera0 is equal tot,
– (if 7→ 1): the flag register with interrupt enabled.

27

(p,g)⇒

{

[t] ∗ (if 7→ 0) ∗ ⋄J(t)

[t] ∗ (if 7→ 1)

}(t)

⊲Ψ(pc+1)

Ψ,J ⊢ {(p,g)} pc : sti
(STI)

(p,g)⇒

{

[t] ∗ (if 7→ 1)

[t] ∗ (if 7→ 0) ∗ ⋄J(t)

}(t)

⊲Ψ(pc+1)

Ψ,J ⊢ {(p,g)} pc : cli
(CLI)

(p,g)⇒

{

[[·]] ∗ (a2 7→ t) ∗ 〈t〉 ∗ (if 7→ 0) ∗ ⋄J(t)

⊥

}(t)

Ψ,J ⊢ {(p,g)} pc : iret
(IRET)

(p∧∧(if →֒ 1),g)⇒

{

[t] ∗ (a2 7→ t) ∗ (if 7→ 1)

[t] ∗ (a2 7→ t) ∗ (if 7→ 1)

}(t)

⊲ (p,g)

Ψ,J ⊢ ih{(p,g)} pc : c
(INTR)

Ψ(lintr)=(p,g)isr ∀f ∈ dom(C) . Ψ,J ⊢ ih{Ψ(f)}f : C(f) Ψ,J ⊢ {Ψ(f)} pc : i

Ψ,J ⊢C
(CDHP)

where(p,g)isr ,

[[·]] ∗ K(istack, ihksize) ∗ 〈t〉 ∗ (a2 7→ t) ∗ ⋄J(t)
∗(v0,a0,a1,a2,ra 7→ , , , ,)

⊥

(t)

Fig. 17.Extended inference rules of Ext. I

28

After interrupt, the current instruction should be verifiedagain under the current speci-
fication.

The rule of (IRET) states if the ISR want to load the context of a new thread, it
should have the following resources:

– [[·]]: the current ISR resource,
– 〈t〉: the resource of a new ready thread,
– (a2 7→ t): the value of registera2 pointing tot,
– (if 7→ 0): the flag register with interrupt enabled,
– ⋄J(t): shared resources.

The rules of (STI) and (CLI) cause ownership tranfer of the shared resources spec-
ified by⋄J(t), wheret is exactly the ID of current running thread.

The rule of (CDHP) is changed as well. Each instruction inC should be checked
by the rule (INTR) . Moreover, the specification of the ISR,(p,g)isr is hardwired at the
label lintr. The specification of ISR specifies the precondition, which should have the
following resources:

– [[·]]: the current ISR resource,
– 〈t〉: the resource of the interrupted thread,
– (a2 7→ t): the value of registera2 pointing tot,
– (if 7→ 0): the flag register with interrupt disabled,
– K(istack, ihksize): the special stack for ISR,
– ⋄J(t): shared resources.

6.2 Invariant of global resources

Running thread.The concrete resources of a running thread are specified by a con-
tinuationCont with an additional condition, the running thread owns all registers. The
parameterpc points to the next instruction the thread is going to run.

CThrd(Ψ, t,pc) , ∃∃ n.Cont(n,Ψ,pc)∧∧([t] ∗ ∃∃ R.⌊R⌋ ∗ true)

Ready thread.Because the interrupt must be enabled before the processor could be in-
terrupted, any ready thread won’t have the shared resourceswhen running. Accordingly,
we modify the definition ofRThrd as below:

RThrd(Ψ, t,Rt ,pct) , ⌊Rt⌋ ∗ (if 7→ 1) ∗ [t] −∗CThrd(Ψ, t,pct)

The definition ofCThrd is same to the definition in Section 4.5.

Interrupt service routine.When a thread is interrupted, the ISR will use a reserved
block of stack space (with size ofihksize). Thus we define the resources of ISR as below:

IThrd(Ψ,pc) , ∃∃ n.Cont(n,Ψ,pc)∧∧([[·]] ∗ ∃∃ R.⌊R⌋ ∗ kspace(istack, ihksize) ∗ true)

The global invariantGINV is defined according to the resource layout. Its form of the
definition depends the condition whether the processor is running in the ISR, or a thread.
Note that the shared resources will be get out of the running thread if the interrupt is
enabled, otherwise it will bring data racing for a simple reason that the shared resources
are accessed from both threads and the ISR.GINV:

29

GINV(Ψ,P,pc) , CThrd(Ψ, t,pc) ∗ kspace(istack, ihksize) ∗ RThrd(Ψ, t0,R0,pc0)

∗ · · · ∗ RThrd(Ψ, tn,Rn,pcn)

∗((if 7→ 1) −∗(if 7→ 1) ∗ I(t))∧∧((if 7→ 0) −∗(if 7→ 0))

if P={t : run, t0 : (rdy,R0,pc0), . . . , tn : (rdy,Rn,pcn)}

GINV(Ψ,P,pc) , IThrd(Ψ,pc) ∗ RThrd(Ψ, t0,R0,pc0) ∗ · · · ∗ RThrd(Ψ, tn,Rn,pcn)

if P={isr : intr, t0 : (rdy,R0,pc0), . . . , tn : (rdy,Rn,pcn)}

Soundness.The soundess theorem of proof system can be proved by preservation of
the global invariant:

Theorem 5 (Soundness of Ext.I).For any machine configuration(C,S,pc), if its code
is verifiedΨ,J ⊢C and its state satisfies the global invariantS⊢ GINV(Ψ,P,pc), then it is
safe to run ,Safe((C,S,pc)).

Machine translation.To make the verification result based on the physical machine, the
new abstract commands should be able to be translated to concrete code. In many real-
istic machine, there often are special instruction to turn on/off interrupt, so it’s easy to
translatesti andcli to those intructions. But forintr andiret, since the two abstract
instructions are responsible for saving and loading context data, each of them should be
translated to a sequence of instructions, from the labelsentry ISR andloadctx:

entry ISR: | loadctx:

sw ra, 0(a0) | lw sp, 20(a0)

sw v0, 4(a0) | lw a2, 16(a0)

sw a0, 8(a0) | lw a1, 12(a0)

sw a1, 12(a0) | lw a0, 8(a0)

sw a2, 16(a0) | lw v0, 4(a0)

sw sp, 20(a0) | lw ra, 0(a0)

sw k0, 24(a0) | lw k0, 24(a0)

movi sp, istack | iret

The operations done by hardware when an interrupt occurrs are: the program counter is
saved to the stack of interrupted thread, the processor jumps toentry ISR. And then a
sequence of built-in code saves the registers into TCB, and change the stack pointer to a
special stack. When returns from the ISR, the processor willload the registers of a new
thread, and then run theiret instruction to jump to the code whose label was saved on
the stack before.

6.3 Verification

We modify the definition of the two invariants of shared resources and give them below:

J(t) , ptcb(t) ∗ (cur 7→ t) ∗ RQ(rq)

Then we can verify a small interrupt handler by the inferencerules presented. The
assembly code and selected assertions are shown in Figure 18.

30

intr handler:

{[[·]] ∗ (if 7→ 0) ∗ ptcb(t) ∗ 〈t〉 ∗ (cur 7→ t) ∗ RQ(rq) ∗ K(istack, ihksize)
∗(a0 7→ t) ∗ (v0,a1,a2,ra 7→)}

movi a1, a0

movi a0, rq

{[[·]] ∗ (if 7→ 0) ∗ ptcb(t) ∗ 〈t〉 ∗ (cur 7→ t) ∗ RQ(rq) ∗ K(istack, ihksize)
∗(a0 7→ rq) ∗ (a1 7→ t) ∗ (v0,a2,ra 7→)}

call deq

bz v0, ihret

{[[·]] ∗ (if 7→ 0) ∗ ptcb(t) ∗ 〈t〉 ∗ (cur 7→ t) ∗ RQ(rq) ∗ K(istack, ihksize)
∗(v0 7→ t ′) ∗ 〈t ′〉 ∗ ptcb(t ′) ∗ (a0 7→ rq) ∗ (a1 7→ t) ∗ (a2,ra 7→)}

movi a2, cur

sw v0, 0(a2)

{[[·]] ∗ (if 7→ 0) ∗ ptcb(t) ∗ 〈t〉 ∗ (cur 7→ t ′) ∗ RQ(rq) ∗ K(istack, ihksize)
∗(v0 7→ t ′) ∗ 〈t ′〉 ∗ ptcb(t ′) ∗ (a0 7→ rq) ∗ (a1 7→ t) ∗ (a2,ra 7→)}

call enq

{[[·]] ∗ (if 7→ 0) ∗ (cur 7→ t ′) ∗ (〈t〉 −∗RQ(rq)) ∗ K(istack, ihksize)
∗〈t ′〉 ∗ ptcb(t ′) ∗ (a0 7→ rq) ∗ (a1 7→ t) ∗ (v0,a2,ra 7→)}

movi a2, cur

lw a0, 0(a2)

{[[·]] ∗ (if 7→ 0) ∗ (cur 7→ t ′) ∗ (〈t〉 −∗RQ(rq)) ∗ K(istack, ihksize)
∗〈t ′〉 ∗ ptcb(t ′) ∗ (a0 7→ t ′) ∗ (v0,a1,a2,ra 7→)}

ihret:

{[[·]] ∗ (if 7→ 0) ∗ K(istack, ihksize) ∗ (v0,a1,a2,ra 7→)
∗∃∃ t ′ .((a0 7→ t ′) ∗ ptcb(t ′) ∗ (cur 7→ t ′) ∗ RQ(rq))}

iret

Fig. 18.Verification ofintr handler()

31

Disscussion.While in some realistic system, context data and the programcounter of
processor are usually pushed into stack. This pattern is different from ours. But it is easy
to modify the machine to support it. In the kernel of Minix [9], its scheduling pattern
has another slight difference from the pattern verified in this section. Minix uses a fixed
kernel stack. When a user process is trapped into the kernel,the kernel will switch to the
kernel stack thereafter and do the kernel jobs. Our framework is also easy to be adpated
to this pattern by modifying the definition ofIThrd: which will be the composition of
CThrd andRThrd without stack borrowing.

32

7 Extension 2: dynamic thread (de)allocation

In this section, we extend our verification framework with thread dynamic creation
and deallocation support to verify a mini thread manager with the following thread
operations : thread create, thread exit. See our technical report for other operations:
thread yield, thread kill and thread join.

The implementation of mini thread manager is given in Figure19. To support dy-
namic thread allocation, the stack location should be stored in the TCB. To support
thread joining, a fieldjoiner is added so as to identify another thread which is waiting
for this thead. Thus, this thread can be notified if thread is terminated. Please note that
any thread can be waited by only one thread. In this mini thread manager, we adopt the
scheduling pattern(III), and add a separate threadsched for do scheduling. Besides the
global pointerscur andrq, we add one more thread queue for collecting dead threads,
pointed bydq.

We need three auxiliary functions for adding or removing nodes from thread queues
and two functions about allocating/deallocating fixed-sized thread stacks. The function
create() is for thread creation. It initializes a TCB and puts it into the ready thread
queue. Sometimes, the scheduler may choose this new thread to run. The entry point of
thread is put into the context data in TCB.

The functionschedth() does scheduling job in a separate thread. There a slight
difference between this function with the version in Section ?? that the scheduler only
gets a new thread out of the ready thread queue, and doesn’t put the old thread back into
the ready thread.

When a thread has finished its task, it can callexit() to terminate itself. Theexit()
function will firstly check whether there is a thread waitingfor it. If so, the function puts
this thread into the ready thread queue and cleans thejoiner field in the TCB of current
thread. Thenexit() function will put current thread into the dead thread queue,load
the context of the scheduler thread and hand over the controlof processor.

The functionjoin() implements the synchronization of threads. When invoked, it
firstly checks whether the waited thread has been dead. If so,the function will free
the stack of the dead thread, get the TCB of waited thread and return. Otherwise, the
function checks whether the waited thread is in the ready thread. If that, modify the
joiner field (of the waited thread) to the ID of current running thread. Otherwise, it
does context switch to the scheduler thread and loops when comming back.

The functionkill() can terminate any thread in the system no matter what it is.
When invoked, it checks whether the victim has been dead already. If not, the function
gets the victim thread out of the ready thread queue, and putsit into the dead thread
queue. And the function checks whether some thread is waiting for the victim thread, if
so, the killer thread put the waiter thread into the ready thread queue.

7.1 Abstract machine

To support thread dynamic allocation and deallocation, we separate the stack spaceK
from the shared heapH in the machine stateS. The space of stacks is for all threads, but
cannot be shared between threads. The stack spaceK is a mapping from labels to words
like heapH. To specify a dead thread, we add a new type of abstract thread, (dead,k). In

33

struct tcb {
struct context ctxt;

int *stack;

struct tcb *prev, *next;

struct tcb *joiner;

};

struct tcb sched;

struct tcb *cur, *rq, *dq;

void create(struct tcb *new, void (*f)())

{
int *ss; ss = kalloc();

new->stack = ss;

new->ctxt.ra = (int)f;

new->ctxt.sp = (int)(ss + KMAXSIZE);

new->joiner = NULL;

enq(rq,new);

return;

}

void exit()

{
struct tcb *old;

if(cur->joiner!=NULL) {
enq(rq, cur->joiner);

cur-> joiner = NULL;

}
enq(dq, cur);

loadctx(&sched);

}

void yield()

{
enq(rq,cur);

cswitch(cur, &sched);

return;

}

int *kalloc();

void kfree(int *p);

bool inq(struct tcb *q, *p);

void rmq(struct tcb *q, *p);

struct tcb *deq(struct tcb *q);

void enq(struct tcb *q, *p);

void schedth()

{
while(1){
cur = dequeue(rq);

if (cur == NULL)

continue;

cswitch(&sched, cur);

}
}

int kill(struct tcb *t)

{
if (inq(dq, t) == 0)

return 0;

if (inq(rq, t) == -1)

return -1;

rmq(rq, t);

if (t->joiner != NULL)

enq(rq,t->joiner);

t->joiner = NULL;

enq(dq,t);

return 0;

}

int join(struct tcb *t)

{
while(rmq(dq, t) == -1)

if (inq(rq, t) == -1)

return -1;

if (t->joiner != NULL)

return -1;

t->joiner = cur;

cswitch(cur, &sched);

}
kfree(t->stack);

return 0;

}

Fig. 19.Ext. 2: The C code of a mini thread manager

34

(Mach) W ::= (C,S,pc)

(State) S ::= (H,K,R,P)

(Heap) H ::= {l : w}∗

(Stack) K ::= {l : w}∗

(Thrd) T ::= run | (rdy,R) | dead

(AbsIntr) c ::= cswitch | tnewr | tdelr | quit | i

Fig. 20.Abstract machine

any abstract thread, there is an additional value namedk to record the start address of
the stack. And we introduce three new abstract instructions: tnew to make a new thread
resource from heap;tdel to recycle a dead thread resource back to heap; andquit to
terminate current running thread and load the context of another thread. The extended
abstract machine is shown in Figure 20.

Operational semantics.The extended operational semantics are presented in Figure21.
The state transition of the commandcswitch is exchanging the tags of two thread

entities: changing the running thread to ready and changinga ready thread to running.
The two thread entities are referenced by the registers,a0 anda1. The commandquit
also exchanges the tags of two thread entities: changing therunning thread to dead
and changing a ready thread to running. The ready thread should be referenced by the
registera0. The instructiontnew r turns a heap blockmck(l,R) into a ready thread entity,
with ID stored in the registerr. And the instructiontdel r turns a dead abstract thread
back into the heap.

7.2 Assertion language

We add an assertion construct to represent the resource of a dead thread,〈|t|〉. Since
we separate heap from stack space, we usel w to specify a cell in stack space and
usel 7→ w to specify a cell in heap. A shared assertion doesn’t containany resource of
register and stack. We change the meaning of⋄ p to that: a shared assertionp doesn’t
specify any resource of registers or resource on stack.

〈|t|〉 , λ(H,K,R,P) .P={t : (dead,)} ∧ H={·} ∧ K={·} ∧ R={·}

l w , λ(H,K,R,P) .K={l : w} ∧ l 6= NULL ∧ H={·} ∧ R={·} ∧ P={·}

l 7→ w , λ(H,K,R,P) .H={l : w} ∧ l 6= NULL ∧ K={·} ∧ R={·} ∧ P={·}

⋄ p , λ(H,K,R,P) . p (H,K,R,P) ∧ R={·} ∧ K={·}

The definition of the notationkspace(bp,n) need to be changed for specfying unused
stack space, andK(bp,n, · · ·) specifying the shape of a stack frame:

kspace(bp,n) , (bp) ∗ (bp+4) ∗ · · · ∗ (bp+4(n−1))

hspace(l,n) , (l 7→) ∗ (l+4 7→) ∗ · · · ∗ (l+4(n−1) 7→)

K(bp,n,w0 :: w1 :: . . . :: wm) , ∃∃ sp.(sp 7→ sp) ∗ ♯(sp=bp+4n)

∗kspace(bp,n) ∗ (sp w0) ∗ (sp+4 w1) ∗ · · · ∗ (sp+4m wm)

35

C(pc)=c (S,pc)
c

→֒ (S′,pc′)

(C,S,pc) 7−→ (C,S′,pc′)

((H,K,R,P),pc)
c

→֒ ((H ′,K′,R′,P′),pc′)

if c= then

i P=P′ ∧ ((H,R),pc)
i

→֒ ((H ′,R′),pc′)

P=P′ ∧ ((K,R),pc)
i

→֒ ((K′,R′),pc′)

cswitch H=H ′ ∧ K=K′ ∧ R′′=R{ra : pc+1} ∧ pc′=R′(ra)

∧ t=R(a0) ∧ t ′=R(a1)
∧P ={t : run, t ′ : (rdy,R′)}⊎P′′

∧P′={t : (rdy,R′′), t ′ : run}⊎P′′

∧RandR′ is complete.
quit H=H ′ ∧ K=K′ ∧ t ′=R(a0) ∧ pc′=R′(ra)

∧P ={t : run, t ′ : (rdy,R′)}⊎P′′

∧P′={t : dead, t ′ : run}⊎P′′

tnew r H=H ′ ⊎mck(tx,Rx,kx)⊎blk(kx,kmaxsize)
∧P′=P⊎{tx : (rdy,Rx)} ∧ R=R′ ∧ tx=R(r)
∧K′=K ⊎blk(kx,kmaxsize) ∧ pc′=pc+1

tdel r H ′=H ⊎mck(tx,Rx,kx)⊎blk(kx,kmaxsize)
∧P=P′⊎{tx : dead} ∧ R=R′ ∧ tx=R(r)
∧K=K′ ⊎blk(kx,kmaxsize) ∧ pc′=pc+1

mck(l,R,k) , mc(l,R)⊎{l+24 : k}
blk(k,s) , {k : ,k+4 : , . . . ,k+4(s−1) : }

Fig. 21.Operational semantics

36

We use the following notations to specify data in TCBs:

t
stack
7−→ k , t+OFF STACK 7→ k

t
next
7−→ p , t+OFF NEXT 7→ p

t
prev
7−→ q , t+OFF PREV 7→ q

t
joiner
7−→ j , t+OFF JOINER 7→ j

Then we define notations for specifying the exposed part of TCB. The notation
rtcb(t) specifies three pointers, among which the pointer ofjoiner points to a waiting
chain, specified byWQt. The notationdtcb(t) specifies three pointers, but the pointer of
joiner should beNULL. A dead thread should be joined immediately, and it is unrea-
sonable that the dead thread is waited for by other thread. Since a thread A can wait
for a thread B, which can still wait for another thread C, the waiting chain will be a
linked list organized by the fieldjoiner in TCBs. Its definition includes ready thread
resources and we don’t discriminate abstract waiting threads with ready threads in our
framework. The notationtcb(t) is used to specify an empty TCB with all fields.

rtcb(t) , (t
prev
7−→) ∗ (t

next
7−→) ∗ ∃∃ j .(t

joiner
7−→ j) ∗ WQ(j)

dtcb(t) , (t
prev
7−→) ∗ (t

next
7−→) ∗ (t

joiner
7−→ NULL)

WQ(t) , (〈t〉 ∗ rtcb(t))∨∨♯(t=NULL)

tcb(t) , (t
ctxt
7−→) ∗ (t

stack
7−→) ∗ dtcb(t)

Since a ready thread may be connected to a waiting chain, thuswe re-define the ready
thread queue: each thread in the ready thread queue is connected to a waiting chain,
which could be empty to indicate no waiting threads for this thread.

RQseg(t, t ′) , 〈t〉 ∗ (t
prev
7−→ t ′) ∗ ∃∃ t ′′ .(t

next
7−→ t ′′) ∗ RQseg(t ′′, t)

∗∃∃ j .(t
joiner
7−→ j) ∗ WQ(j)

RQseg(t, t ′) , ♯(t=NULL)

RQ(q) , ∃ t .(q 7→ t) ∗ RQseg(t,NULL)

We add two new invariants,X andJ. The first oneX is used to specify the shared
resources beforequit. Like I , X also takes two parameters,i.e., the ID of the thread
quiting and the new thread. The second oneJ is used to specify the shared resources
after context switch. The reason why we don’tI here is that the last thread could be a
dead thread, or a ready thread. The two invariants also need to bepreciseand should
satisfy the following requirement:

∀ t, t ′ .X(t, t ′) ∗ 〈|t|〉 ⇒ J(t ′) ∀ t, t ′ . I(t, t ′) ∗ 〈|t|〉 ⇒ J(t ′)

SinceX specifies the invariant before one threadquit, if it is added a dead resource of
the thread〈|t|〉, the separation conjuction will imply the invariant ofJ(t). The invariantX
shouldn’t specify any stack resouce since stack resources are always private. If not, the
private stack space of one thread will be taken by other threads and thus this thread will
be unable to be released and hard to tackle.

37

7.3 Inference rules

The extended inference rules of new instructions are shown in Figure 22. We add a
notation∆ to specify the set of specification of new threads, each of which, we assume,
is a static specification ,(p,g)init , for a new-born thread.

∆ , {f : (p,g)init}
∗

The specification(p,g)init states the initial resources of new threads: the current thread
resource, all registers and a block of stack space with a fixedsize,kmaxsize.

(p,g)init ,

{

[t] ∗ ⌊R⌋ ∗ kspace(R(sp),kmaxsize)

⊥

}(t,R)

The rule of (QUIT) states that if a thread wants to exit, it should have the following
resources:

– [t]: the current thread resource;
– 〈t ′〉: resource of a ready thread;
– (a0 7→ t ′): the registera0 with value oft ′;
– ⋄X(t, t ′): shared resources except the resources of two threads,t andt ′.

The rule of (TNEW) states that the union of the following resources can be turned
into an abstract resource of a ready thread:

– (t
ctxt,k
7−→ R,k): resources of machine context and a cell of memory with valuek;

– RThrd(∆, t,R,k): resources satisfying the predicate of a concrete ready thread.

NThrd(∆, t,R) , ∃∃ k. t
stack
7−→ k ∗ hspace(k,kmaxsize) ∗ (kspace(k,kmaxsize) −∗RThrd(∆, t,R,k))

The former is a part of TCB of a new thread, and the latter is actually what the new
thread requires to run. Similarly, the rule of (TDEL) is for reasoning about recycling
the concrete resources of a dead thread, specified byDThrd(t,k).

7.4 Invariant of global resources

To ensure that the private stack of a thread is not shared to others, we add a stack space
constraint in the definition ofCThrd:

CThrd(Ψ, t,pc) , ∃∃ k.(t
stack
7−→ k) ∗ ∃∃ n.Cont(n,Ψ,pc)

∧∧ ([t] ∗ ∃∃ R.⌊R⌋ ∗ kspace(k,kmaxsize) ∗ ⊤)

The definition of a concrete ready thread is same with one in Sec. 4.5, except it takes
one more parameter, the stack locationk.

RThrd(Ψ, t,R) , ⌊R⌋ ∗ [t] ∗ ⋄ I(t) −∗CThrd(Ψ, t,R(ra))

We add a new definition of a concrete dead threadDThrd, which is just equal to the stack
space of thread starting atk.

38

(p,g)⇒

{

[t] ∗ 〈t ′〉 ∗ (a0,a1 7→ t, t ′) ∗ (ra 7→) ∗ ⋄ I(t, t ′)

[t] ∗ (a0,a1 7→ t, t ′) ∗ (ra 7→) ∗ ⋄J(t)

}(t,t ′)

⊲Ψ(pc+1)

Ψ,∆, I ,J,X ⊢ {(p,g)} pc : cswitch
(CSW)

(p,g)⇒

{

[t] ∗ 〈t ′〉 ∗ (a0 7→ t ′) ∗ ⋄X(t, t ′)

⊥

}(t,t ′)

⊲Ψ(pc+1)

Ψ,∆, I ,J,X ⊢ {(p,g)} pc : quit
(TQUIT)

(p,g)⇒

{

(r 7→ t) ∗ ∃∃ R.(t
ctxt
7−→ R) ∗ NThrd(∆, t,R)

(r 7→ t) ∗ 〈t〉

}(t)

⊲Ψ(pc+1)

Ψ,∆, I ,J,X ⊢ {(p,g)}pc : tnew r
(TNEW)

(p,g)⇒

{

(r 7→ t) ∗ 〈|t|〉

(r 7→ t) ∗ (t
ctxt
7−→) ∗ ∃∃ k.(t

stack
7−→ k) ∗ hspace(k,kmaxsize)

}(t)

⊲Ψ(pc+1)

Ψ,∆, I ,J,X ⊢ {(p,g)} pc : tdel r
(TDEL)

∀f ∈ dom(Ψ) . Ψ,∆, I ,J,X ⊢ {Ψ(f)}f : C(f)

∆ ⊆ Ψ ∀f ∈ dom(∆) .∆(f)⇒ (p,g)init

Ψ,∆, I ,J,X ⊢C
(CDHP)

Fig. 22.Extended inference rules

DThrd(t) , ∃∃ k.(t
stack
7−→ k) ∗ kspace(k,kmaxsize)

The invariant of global resources is defined as below:

GINV(Ψ,P,pc) , CThrd(Ψ, t,pc) ∗ RThrd(Ψ, t0,R0) ∗ · · · ∗ RThrd(Ψ, tm,Rm)

∗DThrd(tm+1) ∗ · · · ∗ DThrd(tn) ∗ ⊤

whereP={t : run, t0 : (rdy,R0), . . . , tm : (rdy,Rm), tm+1 : dead, . . . , tn : dead}

7.5 Soundness

By the invariantGINV, we can prove the soundness theorem of this extension of our
proof system.

Theorem 6. For any machine configuration(C,S,pc), if its code is verifiedΨ,∆, I , I ,X ⊢

C and its state satisfies the global invariantS⊢ GINV(Ψ,P,pc), and if the state can be
mapped to a physical state,S⇓ S, then it is safe to runSafe((C,S,pc)).

Machine translation.The translation from abstract machine defined in this section to
physical machine defined in Section?? is simple to define. The new commandstnew

andtdel can be translated to a nop like instruction,addi r, 0, which doesn’t change the
state. The commandquit can be implemented by instructions easily.

39

tquit:

lw sp, 20(a0)

lw a2, 16(a0)

lw a1, 12(a0)

lw a0, 8(a0)

lw v0, 4(a0)

lw ra, 0(a0)

ret

7.6 Verification example

We define three invariants of shared resources as below:

I(t, t ′) , ♯(t=sched) ∗ (cur 7→ t ′) ∗ rtcb(t ′) ∗ RQ(rq) ∗ DQ(dq)

∨∨ ♯(t ′=sched) ∗ (cur 7→ t) ∗ (〈t〉 −∗RQ(rq)) ∗ DQ(dq)

X(t, t ′) , ♯(t ′=sched) ∗ (cur 7→ t) ∗ RQ(rq) ∗ (〈|t|〉 −∗DQ(dq))

I(t) , ♯(t=sched) ∗ (cur 7→) ∗ RQ(rq) ∗ DQ(dq)

∨∨ ♯(t 6= sched) ∗ rtcb(t) ∗ (cur 7→ t) ∗ 〈sched〉 ∗ RQ(rq) ∗ DQ(dq)

The code and assertions are presented in Figure??–??.

40

create:

{[t] ∗ tcb(t ′) ∗ RQ(rq) ∗ ♯(t ′ ∈ dom(∆))
∗(a0,a1,a2,v0,ra 7→ t ′,f, , , ret) ∗ K(bp,20)}

subi sp, 4

sw ra, 0(sp)

call kalloc

{[t] ∗ tcb(t ′) ∗ RQ(rq) ∗ hspace(k,kmaxsize)
∗(a0,a1,a2,v0,ra 7→ t ′,f, ,k,) ∗ ♯(t ′ ∈ dom(∆)) ∗ K(bp,19, ret)}

sw v0, OFF STACK(a0)

sw a1, 0(a0)

addi v0, KMAXSIZE-1

sw v0, OFF SP(a0)

movi v0, 0

sw v0, OFF JOINER(a0)

tnew a0

{[t] ∗ 〈t ′〉 ∗ rtcb(t ′) ∗ RQ(rq)
∗(a0,a1,a2,v0,ra 7→ t ′, , ,k,) ∗ K(bp,19, ret)}

mov a1, a0

movi a0, rq

call enq

{[t] ∗ RQ(rq) ∗ (a0,a1,a2,v0,ra 7→ , , ,k,) ∗ K(bp,19, ret)}

lw ra, 0(sp)

addi sp, 4

{[t] ∗ RQ(rq) ∗ (a0,a1,a2,v0,ra 7→ , , , ,) ∗ K(bp,19, ret)}

ret

Fig. 23.Verification ofcreate()

41

exit:

{[t] ∗ rtcb(t) ∗ (cur 7→ t) ∗ RQ(rq) ∗ DQ(dq) ∗ 〈sched〉
∗(a0,a1,a2,v0,ra 7→ , , , ,) ∗ K(bp,20)}

movi a2, cur

lw a0, 0(a2)

lw a1, OFF STACK(a0)

bz a1, exit quit

{[t] ∗ (t
prev
7−→) ∗ (t

next
7−→) ∗ (t

joiner
7−→ t ′) ∗ 〈t ′〉 ∗ rtcb(t ′)

∗(cur 7→ t) ∗ RQ(rq) ∗ DQ(dq) ∗ 〈sched〉
∗(a0,a1,a2,v0,ra 7→ t, t ′,cur, , joker) ∗ ∗K(bp,20)}

movi a0, rq

call enq

movi a1, 0

sw a1, 36(a0)

{[t] ∗ dtcb(t) ∗ (cur 7→ t) ∗ RQ(rq) ∗ DQ(dq) ∗ 〈sched〉
∗(a0,a1,a2,v0,ra 7→ t,0, , ,) ∗ K(bp,20)}

exit quit:

{[t] ∗ dtcb(t) ∗ (cur 7→ t) ∗ RQ(rq) ∗ DQ(dq) ∗ 〈sched〉
∗(a0,a1,a2,v0,ra 7→ t,0, , ,) ∗ K(bp,20)}

mov a1, a0

movi a0, rq

call enq

movi a0, sched

{[t] ∗ (cur 7→ t) ∗ RQ(rq) ∗ (〈|t|〉 −∗DQ(dq)) ∗ 〈sched〉
∗(a0,a1,a2,v0,ra 7→ sched, , , ,) ∗ K(bp,20)}

quit

Fig. 24.Verification ofexit()

42

join:

{[t] ∗ rtcb(t) ∗ (cur 7→ t) ∗ RQ(rq) ∗ DQ(dq) ∗ 〈sched〉
∗(a0 7→ t ′) ∗ (v0,a1,a2 7→) ∗ (ra 7→ wr) ∗ K(bp,20, ·)}

addi sp -12

sw ra 8(sp)

sw a0 4(sp)

movi a2 cur

lw a0, 0(a2)

sw a0, 0(sp)

join loop:

{[t] ∗ rtcb(t) ∗ (cur 7→ t) ∗ RQ(rq) ∗ DQ(dq) ∗ 〈sched〉
∗(a0 7→) ∗ (v0,a1,a2,ra 7→)
K(bp,17, t :: t ′ :: wr)}

movi a0, dq

lw a1, 4(sp)

call rmq

bz v0, join free

{[t] ∗ rtcb(t) ∗ (cur 7→ t) ∗ RQ(rq) ∗ DQ(dq) ∗ 〈sched〉
∗(a0 7→) ∗ (a1 7→ t ′) ∗ (v0,a2,ra 7→) ∗ K(bp,17, t :: t ′ :: wr)}

movi a0, rq

call inq

bz v0, join in

jmp join ret

join in:

{[t] ∗ rtcb(t) ∗ (cur 7→ t) ∗ 〈t ′〉 ∗ rtcb(t ′) ∗ DQ(dq) ∗ 〈sched〉
∗(〈t ′〉 ∗ rtcb(t ′) −∗RQ(rq))
∗(a0 7→) ∗ (a1 7→ t ′) ∗ (v0,a2,ra 7→) ∗ K(bp,17, t :: t ′ :: wr)}

lw a0, 36(a1)

bz a0, join wait

movi v0, -1

jmp join ret

Fig. 25.Verification ofjoin() (part 1.)

43

join wait:

{[t] ∗ rtcb(t) ∗ (cur 7→ t) ∗ 〈t ′〉 ∗ dtcb(t ′) ∗ DQ(dq) ∗ 〈sched〉
∗(〈t ′〉 ∗ rtcb(t ′) −∗RQ(rq))
∗(a0 7→ 0) ∗ (a1 7→ t ′) ∗ (v0,a2,ra 7→) ∗ K(bp,17, t :: t ′ :: wr)}

lw a0, 0(sp)

sw a0, 36(a1)

movi a1, sched

{[t] ∗ (cur 7→ t) ∗ (〈t〉 −∗RQ(rq)) ∗ DQ(dq) ∗ 〈sched〉
∗(a0 7→ t) ∗ (a1 7→ sched) ∗ (v0,a2,ra 7→)
∗K(bp,17, t :: t ′ :: wr)}

cswitch

jmp join loop

join free:

{[t] ∗ rtcb(t) ∗ (cur 7→ t) ∗ RQ(rq) ∗ 〈|t ′|〉 ∗ dtcb(t ′) ∗ DQ(dq)
∗(a0 7→) ∗ (a1 7→ t ′) ∗ (v0,a2,ra 7→) ∗ 〈sched〉
∗K(bp,17, t :: t ′ :: wr)}

tdel a1

lw a0, 24(a1)

call kfree

{[t] ∗ rtcb(t) ∗ tcb(t ′) ∗ (cur 7→ t) ∗ RQ(rq) ∗ DQ(dq) ∗ 〈sched〉
∗(a0,a1 7→) ∗ (v0,a1,a2,ra 7→) ∗ K(bp,17, t :: t ′ :: wr)}

movi v0, 0

join ret:

{[t] ∗ rtcb(t) ∗ (cur 7→ t) ∗ RQ(rq) ∗ DQ(dq) ∗ 〈sched〉
∗(a0,a1,a2,ra 7→) ∗ K(bp,17, t :: t ′ :: wr)
∗(v0 7→ 0)∨∨(v0 7→ -1)}

lw ra, 8(sp)

addi sp, 12

{[t] ∗ rtcb(t) ∗ (cur 7→ t) ∗ RQ(rq) ∗ DQ(dq) ∗ 〈sched〉
∗(a0,a1,a2 7→) ∗ (ra 7→ wr) ∗ K(bp,20, ·)
∗((v0 7→ 0) ∗ tcb(t ′))∨∨(v0 7→ -1)}

ret

Fig. 26.Verification ofjoin() (part 2.)

44

schedth:

{[sched] ∗ (cur 7→ t) ∗ 〈t〉 ∗ (〈t〉 −∗RQ(rq)) ∗ K(bp,10, ·)
∗(v0 7→) ∗ (a0 7→) ∗ (a1 7→) ∗ (a2 7→) ∗ (ra 7→)}

movi a0, rq

{[sched] ∗ (cur 7→ t) ∗ RQ(rq) ∗ K(bp, ·, ·)
∗(v0 7→) ∗ (a0 7→ rq) ∗ (a1 7→) ∗ (a2 7→) ∗ (ra 7→)}

call deq

bz v0, schedth

{[sched] ∗ (cur 7→ t) ∗ 〈t ′〉 ∗ ptcb(t ′) ∗ RQ(rq) ∗ K(bp,10, ·)
∗(v0 7→ t ′) ∗ (a0 7→) ∗ (a1 7→) ∗ (a2 7→) ∗ (ra 7→)}

movi a2, cur

sw v0, 0(a2)

mov a1, v0

lw a0, sched

{[sched] ∗ 〈t ′〉 ∗ (cur 7→ t) ∗ ptcb(t ′) ∗ RQ(rq) ∗ K(bp,10, ·)
∗(v0 7→ t ′) ∗ (a0 7→ sched) ∗ (a1 7→ t ′) ∗ (a2 7→) ∗ (ra 7→)}

cswitch

{[sched] ∗ ∃ t ′′ .(cur 7→ t ′′) ∗ (〈t ′′〉 −∗RQ(rq) ∗ K(bp,10, ·)
∗(v0 7→ t ′) ∗ (a0 7→ sched) ∗ (a1 7→ t ′) ∗ (a2 7→) ∗ (ra 7→)}

jmp sched th

yield:

{[t] ∗ rtcb(t) ∗ (cur 7→ t) ∗ RQ(rq) ∗ K(bp,10, ·)
∗(v0 7→) ∗ (a0 7→) ∗ (a1 7→) ∗ (a2 7→) ∗ (ra 7→)}

movi a0, rq

movi a2, cur

lw a1, 0(a2)

call enq

movi a2, cur

lw a0, 0(a2)

movi a1, sched

csw

ret

Fig. 27.Verification ofschedth() andyield()

45

kill:

{[t] ∗ rtcb(t) ∗ RQ(rq) ∗ DQ(dq)
∗(a0 7→ t ′) ∗ (v0,a1,a2 7→) ∗ (ra 7→ wr) ∗ K(bp,20, ·)}

addi sp -8

sw ra 4(sp)

sw a0 0(sp)

{[t] ∗ rtcb(t) ∗ RQ(rq) ∗ DQ(dq)
∗(a0 7→ t ′) ∗ (v0,a1,a2,ra 7→) ∗ K(bp,18, t ′ :: wr)}

mov a1, a0

movi a0, dq

call inq

bz v0, kill ret

{[t] ∗ rtcb(t) ∗ RQ(rq) ∗ DQ(dq)
∗(a0 7→ dq) ∗ (a1 7→ t ′) ∗ (v0,a2,ra 7→) ∗ K(bp,18, t ′ :: wr)}

movi a0, rq

call inq

bz v0, kill inrq

{[t] ∗ rtcb(t) ∗ RQ(rq) ∗ DQ(dq)
∗(a0 7→ rq) ∗ (a1 7→ t ′) ∗ (v0,a2,ra 7→) ∗ K(bp,18, t ′ :: wr)}

jmp kill ret

kill inrq:

call rmq

bz v0, kill ck

jmp kill ret

kill rmrq:

{[t] ∗ rtcb(t) ∗ 〈t ′〉 ∗ rtcb(t ′) ∗ RQ(rq) ∗ DQ(dq)
∗(a0 7→ rq) ∗ (a1 7→ t ′) ∗ (v0,a2,ra 7→) ∗ K(bp,18, t ′ :: wr)}

lw a2, 36(a1)

bz a2, kill endq

mov a1, a2

call enq

kill endq:

lw a1, 0(sp)

sw v0, 36(a1)

movi a0, dq

call enq

kill ret:

lw ra, 4(sp)

addi sp, 8

{[t] ∗ rtcb(t) ∗ RQ(rq) ∗ DQ(dq)
∗(v0,a0,a1,a2 7→) ∗ (ra 7→ wr) ∗ K(bp,20, ·)}

ret

Fig. 28.Verification ofkill()

46

8 Extension 3: Scheduling over SMP

In this section, we extend our proof system to verify a scheduler with symmetrical
multiprocessing support and simple load balancing mechanism.

We show a simple example that doing thread scheduling over multiple processors in
Figure??. We introduce a new struct for each processor to record the meta-data of the
processor. Since the processors cause concurrency, we alsoneed some synchronization
operations, spin locks, to protect shared memory. The scheduler follows the pattern (II)
explained in the Section??. Different from the version on uniprocessor, each processor
has its own thread run queue. The scheduler finds the next runnable thread in the local
thread run queue, and a load balancer can move threads between run queues of different
processors.

In this example, we omit interrupts for simplicity and we assume there is a special
operationcpuid() from that we can have the identity of the processor. We the assume
that the identity numbers of processor are from zero toNCPU−1, whereNCPU is the total
number of processors. We extend the thread control block with one more field,cpuid,
to record which processor the thread runs on.

If a thread run queue owned by some processor is empty, The functionloadbalance()
can be invoked to pull some runnable threads from the runqueue of the busiest proces-
sor. Therefore, each run queue structure has one special lock, which is implemented as
a spin lock, to protect the run queue. If a thread attempts to acquire a spin lock while
it is contended, the thread will busy spins waiting for the lock to become available.
The spinning prevents more than one thread of execution fromentering the critical re-
gion at any one time. We implement a naive algorithm of spin lock with an actomic
compare-and-swap instructionxchg.

In the structcpu, we add containing processor related information. The pointercurr
points to the current running thread on the processor andrq points to the thread queue
of the processor.

To support SMP, the scheduler functionschedule() should be upgraded as follows:

– The pointer of thread queue of the current processor should be obtained via calling
cpuid().

– Before accessing thread run queue, the code must acquire itslock.
– If there is no more thread in the current thread run queue, thescheduler will calling

loadbalance() to move some threads from some busy processor.
– The scheduler get the next thread from the current thread runqueue. If fails, the

function will return immediately. If succeeds, it will set thecpuid of the next thread,
change the pre-CPU variablecurr and peform context switch.

– Most importantly, the scheduler need to get the CPU-ID againafter returning back,
for the current thread might be migrated to another processor and wake up there.

– The scheduler need to release the lock of the current run queue before return. Read-
ers may notice the subtle problem, a thread may release the lock that it didn’t
acuqire because of thread migration. Interestingly, as long as every thread releases
the lock of the the thread run queue of the current thread, theworld is going to be
in order.

47

struct tcb {

struct context ctxt;

struct tcb *prev;

struct tcb *next;

};

struct spinlock {

int locked;

};

struct cpu {

struct spinlock lock;

struct tcb *curr;

struct queue rq;

}cpus[NCPU];

void lock(struct spinlock *lk)

{

while(xchg(&lk->locked, 1) != 0);

}

void unlock(struct spinlock *lk)

{

xchg(&lk->locked, 0);

}

void schedule()

{

struct tcb *curr, *next;

struct cpu *cpu;

cpu = &cpus[cpuid()];

curr = cpu->curr;

lock(&cpu->lock);

next = deq(&cpu->rq);

if (next == NULL) {

unlock(&cpu->lock);

loadbalance();

lock(&cpu->lock);

next = deq(&cpu->rq);

if (next == NULL)

goto sched ret;

}

enq(&cpu->rq, curr);

cswitch(curr, next);

cpu = &cpus[cpuid()];

sched ret:

unlock(&cpu->lock);

return;

}

void loadbalance()

{

struct cpu cpu0, cpu1;

struct tcb *mt;

struct cpu *cpua, *cpub;

cpu0 = cpus[cpuid()];

cpu1 = busiest cpu(cpu0);

if (cpu1 == NULL) goto Llb end;

cpua = cpu0;

cpub = cpu1;

if(cpu0 > cpu1)

swap(cpua, cpub);

lock(&cpua->lock);

lock(&cpub->lock);

mt = deq(cpu1->rq);

if (mt == NULL) goto Llb end;

enq(&cpu0->rq, mt);

Llb end:

unlock(&cpub->lock);

unlock(&cpua->lock);

return;

}

Fig. 29. Implementation of scheduler over SMP

48

lock

A

RQ1

unlock

B

A

cswitch(A,B)

B

A

loadbalance

unlock

C

cswitch(C,A)

RQ2

RQ1 RQ2

Thread A

CPU

Fig. 30.Ownership transfer of load balancing

(Mach) W ::= (C,Y,M,P)

(CPU) X ::= (R,pc)

(Thrd) T ::= (rdy,R) | (run,u)

(Pool) P ::= {t : T}∗

(CPUSet) Y ::= {u : X}∗

(CPUId) u,v ::= w

(Mem) M ::= {l : w}∗ (l=4n,n=0,1,2, . . .)

(Code) C ::= {f : c}∗

(Instr) c ::= i | cswitch | cpuid r | xchg rd,w(rs)

Fig. 31.Definition of abstract machine

The idea ofthreads as resourcesis still helpful to reason about load balancing.
Thread resources bound with TCBs are migrated back and forthamong processors.
Thread resources don’t only provide the knowledge of concrete threads in the system,
but also provide the knowledge that which processor one thread is belong to. We extend
the running thread with processor information,[t � u], that means the threadt is running
on the processor whose ID number isu.

8.1 Abstract machine and operational semantics

To support multicore machine, we add a notationX to specify a set of processors, each of
them has a register file and a program counter. The running abstract thread is extended
with a processor-ID,u, which is just a machine word. The instruction set of the machine
is extended with an atomic instructionxchg rd, [rs+w] to exchange the value (in the
registerrs) with the value in memory (addressed byrs).

The operational semantics of instructions is shown in Fig. 32. The new instruction
cpuid r puts the CPU-ID into the registerr. And the other new instructionxchg ex-
changes the value in a register with the value in a memory cell. All of other instructions
are same to the definitions in Fig.??. For the abstract instruction,cswitch, it set the
CPU-ID of the current processor to the next ready thread. Thepredicateatomic is used

49

(u,R,pc,M)
i

→֒ (u,R′,pc′,M′)

if i= then
xchg rd,w(rs) M′=M{R(rs)+w : R(rd)} ∧ pc′=pc+1

∧R′=R{rd : M(R(rs)+w)}

otherwise (R,pc,M)
i

→֒ (R′,pc′,M′)

(u,R,pc,M,P)
c

→֒ (u,R′,pc′,M′,P′)

if c= then
cswitch ∃R′′,P′′,pc′′ .M=M′ ∧ t=R(a0) ∧ t ′=R(a1)

∧P ={t : (run,u) t ′ : (rdy,R′)}⊎P′′

∧P′={t : (rdy,R′′), t ′ : (run,u)}⊎P′′

∧pc′′=pc+1 ∧ R′′=R{ra : pc+1}

RandR′ is complete.

atomic(i) , i ∈ {xchg rd, [rs+w]}

Fig. 32.Operational semantics of instructions (smp)

to specify whether an instruction is an atomic instruction,which locks the data bus to
prevent memory from being accessed by other processors. Currently, only thexchg is
atomic.

The operational semantics of our multicore machine is shownin Fig. ??. One exe-
cution step of a processor is either an atomic step or a concurrent step. If a processor
runs one atomic step, it goes forward without stop. While if it runs one concurrent step,
it may go forward or be stopped by other atomic instruction onother processors. The
step relation for the whole multicore machine is in the form of:

(C,Y,M,P) 7−→ (C,Y′,M′,P′)

If one processor runs an atomic instruction, all of other processors are stopped from
execution. And if no atomic instruction at a time, then all processors can run one step
or not.

The notation of an abstract running thread is changed to[t � u], adding the current
processor-ID. The notation of an abstract ready thead

[t � u] , λ(M,R,P) .M={·} ∧ R={·} ∧ P={t : (run,u)}

〈t〉 , λ(M,R,P) .M={·} ∧ R={·} ∧ P={t : (rdy,X)}

8.2 Inference Rules

We only show inference rules new in Figure??. Other rules are similar with the rules
defined previously. The judgments of this version of verification framework is of the
form:

50

c=C(pc) atomic(c) (u,R,pc,M,P)
c

→֒ (u,R′,pc′,M′,P′)

(C,u,(R,pc),M,P) 7−→atomic(C,u,(R′,pc′),M′,P′)

c=C(pc) atomic(c) (u,R,pc,M,P)
c

→֒ (u,R′,pc′,M′,P′)

(C,u,(R,pc),M,P) 7−→conc(C,u,(R′,pc′),M′,P′)

(C,u,(R,pc),M,P) 7−→conc(C,u,(R,pc),M,P)

(C,u,Xk,M,P′) 7−→atomic(C,u,X′
kM′,P′)

Y(u)=Xk Y′=Y{uk : X′
k}

(C,Y,M,P) 7−→ (C,Y′,M′,P′)

∀k∈ {1, . . . ,n} .(C,uk,Xk,M) 7−→conc(C,uk,X′
k,M

′)

X={u1 : X1,u2 : X2, . . . ,un : Xn} X′={u1 : X′
1,u2 : X′

2, . . . ,un : X′
n}

(C,Y,M,P) 7−→ (C,Y′,M′,P′)

Fig. 33.Operational semantics of abstract machine (Ext. 3)

Ψ,Σ, I ⊢ {(p,g)} pc : c

To verify the code running on multicore machines, we draw ideas of ownership
transfer from concurrent separation logic [17]. By defininginvariants for shared re-
sources, our proof system ensures safe operations. Like concurrent separation logic, the
invariants in our proof system are abstract and can be instantiated to concrete definitions
according to the concrete implementation of kernels. In multicore machines, there are
two kinds of shared resources.

The first kind is the global resources shared by all processors. We use a notationΣ
to specify the invariant of global resources. If one thread accesses the resources spec-
ified by IΣ, it should use kernel synchronization operations,e.g., spin locks, to protect
accessing. The invariantΣ is a partial map from lock locations to assertions.

Σ ∈ Word ⇀ Assert

The notationIΣ is used to specify all the global resources, and it is defined as a big
separation conjunction assertion of all of the assertions in theΣ:

IΣ ,
⊙

l∈dom(Σ)(l 7→ 0 ∗ emp)∨∨(l 7→ 1 ∗ Σ(l))

We define an operator to append the shared resources to a(p,g) pair so as to specify
actions performed by actomic instructions, likexchg etc.

(p,g) ∗ IΣ , (p ∗ IΣ, (λS,S′ .∀S1,S2 .S=S1⊎S2 → p S1

→ IΣ S2 →∃S′1,S
′
2 .S

′=S′1⊎S′2 ∧ g S1 S′1 ∧ IΣ S′2))

51

∀f ∈ dom(C) .Ψ,Σ, I ⊢ {(p,g)} f : C(f)

Ψ,Σ, I ⊢ C
(CDHP)

(p,g) ∗ IΣ ⇒

{

(rt 7→ w) ∗ (rs+w 7→ w′)

(rt 7→ w′) ∗ (rs+w 7→ w)

}(w,w′)

⊲Ψ(pc+1)

Ψ,Σ, I ⊢ {(p,g)} pc : xchg rt , [rs+w]
(XCHG)

(p,g)⇒

{

(a0,a1 7→ t) ∗ [t � u] ∗ 〈t ′〉 ∗ I(u, t, t ′)

(a0,a1 7→) ∗ ∃∃ v. [t � v] ∗ ∃∃ t ′′ .〈t ′′〉 ∗ I(v, t ′′, t)

}(u,t,t ′)

⊲Ψ(pc+1)

Ψ,Σ, I ⊢ {(p,g)} pc : cswitch
(CSW)

Fig. 34. Inference rules of Ext. 3

Despite the two forms of concurrency, one thread can also voluntarily perform con-
text switch to relinquish processor. The invariantsI andI defined in the Sec.??specify
the resources, coming either from global shared resources,per-CPU shared resources,
or thread local resources, transferred through context switch. They need one more pa-
rameter,u to relate resources with processors.

I ∈ CID → TID → TID → Assert

The rule(XCHG) is for atomic instructionxchg. Atomic instruction can access mem-
ory with bus locked, and then have the resources of global shared memory. So the spec-
ification of this instruction is the separation conjunctionof local resources and shared
resourcesIΣ. The requirement is that the resources of global shared memory should
satisfy its invariant before and after the accessing by atomic instructions.

The rule(CSWTICH) requires that the transferred shared resources should satisfy
I(u, t, t ′) with respect to the current processor ID. After context switch to the same thread,
it may wake up on a different processor with different a processor ID.

8.3 Concrete thread resources and soundness

After changing of the concept of abstract running threads, we need change the defini-
tions of concrete threads likewise. The continuation of a thread is same to the definition
in Section 4. We list the definitions that only need to be changed here.

Running thread.The definition of a concrete running thread is the resources asserted by
the assertionp and the continuation. The resources should include the abstract resource
of the current running thread and all registers.

CThrd(Ψ,u, t,pc) , ∃∃ n.Cont(n,Ψ,pc)∧∧([t � u] ∗ ⌊ ⌋ ∗ true)

52

Ready thread.For a ready thread, its concrete resources can be defined by separation
implication−∗ : if given the resources of machine context data,⌊R⌋, (2) its own running
thread abstract resource,[t � u], on an unknown processor, and (3) shared resources
specified by⋄ I(t), a ready thread can become a running thread.

RThrd(Ψ, t,R) , ⌊R⌋ ∗ ∃∃ u. [t � u] ∗ ∃∃ t ′ .〈t ′〉 ∗ ⋄ I(u, t ′, t)

−∗ CThrd(Ψ,u, t,R(ra))

The second parameter ofRThrd is the ID of the thread and the third parameter is the ma-
chine context data saved in its TCB. Please note that the program counter of a runnable
thread is saved into the registerra.

Invariant of global resources.The invariant of global resources is defined with respect
to the structure of the thread pool.

GINV(Ψ,Y,P,pc) , (⌊R0⌋ −∗CThrd(Ψ,u0, t0,pc0)) ∗ · · · ∗ (⌊Rn⌋ −∗CThrd(Ψ,un, tn,pcn))

∗RThrd(Ψ, t(n+1),R(n+1)) ∗ · · · ∗ RThrd(Ψ, tn+1,Rn+1)

whereY={u0 : (R0,pc0), . . . , un : (Rn,pcn)}

whereP={t0 : (run,u0) . . . , tn : (run,un), tn+1 : (rdy,Rn+1), . . . , tn+m : (rdy,Rn+m)}

8.4 Soundness

The global invariant of the whole machine is defined as below:The memory resources
and abstract thread resources can be partitioned inton parts, wheren is the number
of processors. Each processor along with its resources satisfies the interpretation of
abstract threads that it owns.

8.5 Verification of scheduler and load balancer

The assembly code of scheduler and load balancer are shown inFigure 35–39. The
global shared resources are the thread run queues owned by all processors. The invariant
Σ is defined as a map fromlki to assertion specified byRQ(u).

I(u, t, t ′) , curr(u, t ′) ∗ ptcb(t ′) ∗ (〈t〉 −∗RQ(u))

Σ , {lk0 : RQ(0), . . . , lkn : RQ(n)}

wherelku=CPUS+u×SIZE CPU+OFF LOCK

ptcb(t) , (t
prev
7−→) ∗ (t

next
7−→)

RQ(u) , ∃∃ rq . ♯(rq = CPUS+u×SIZE CPU+OFF RQ) ∗ RQ(rq)

curr(u, t) , ((CPUS+u×SIZE CPU+OFF CURR) 7→ t)

whereCPUS is the starting location of the array of cpu structs;SIZE CPU is the size of
the cpu struct;OFF LOCK, OFF RQ andOFF CURR are the offsets of fields in the cpu struct
defined in Figure 29.

53

{[t � u] ∗ ptcb(t) ∗ curr(u, t) ∗ (a0,a1,a2,v0,ra 7→ w1,w2,w3, , ret) ∗ K(bp,20)}

schedule:

subi sp, 28

sw ra, 24(sp)

sw a2, 20(sp)

sw a1, 16(sp)

sw a0, 12(sp)

{[t � u] ∗ ptcb(t) ∗ curr(u, t) ∗ (a0,a1,a2,v0,ra 7→ , , , ,)
∗K(bp,13, :: :: :: w1 :: w2 :: w3 :: ret)}

cpuid a0

call getcpu

{[t � u] ∗ ptcb(t) ∗ curr(u, t) ∗ (a0,a1,a2,v0,ra 7→ u, , ,CPUS[u],)
∗K(bp,13, :: :: :: w1 :: w2 :: w3 :: ret)}

sw v0, 8(sp)

lw a0, OFF LOCK(v0)

call lock

{[t � u] ∗ ptcb(t) ∗ curr(u, t) ∗ RQ(u) ∗ (a0,a1,a2,v0,ra 7→ CPUS[u], , ,CPUS[u],)
∗K(bp,13, :: :: CPUS[u] :: w1 :: w2 :: w3 :: ret)}

lw a0, OFF RQ(v0)

call deq

bz v0, sched lb

jmp sched cont

{[t � u] ∗ ptcb(t) ∗ curr(u, t) ∗ RQ(u) ∗ (a0,a1,a2,v0,ra 7→ CPUS[u], , ,NULL,)
∗K(bp,13, :: :: CPUS[u] :: w1 :: w2 :: w3 :: ret)}

sched lb:

lw a2, 8(sp)

lw a0, OFF LOCK(a2)

call unlock

{[t � u] ∗ ptcb(t) ∗ curr(u, t) ∗ (a0,a1,a2,v0,ra 7→ CPUS[u], , ,NULL,)
∗K(bp,13, :: :: CPUS[u] :: w1 :: w2 :: w3 :: ret)}

call loadbalance

{[t � u] ∗ ptcb(t) ∗ curr(u, t) ∗ (a0,a1,a2,v0,ra 7→ CPUS[u], , , ,)
∗K(bp,13, :: :: CPUS[u] :: w1 :: w2 :: w3 :: ret)}

lw a2, 8(sp)

lw a0, OFF LOCK(a2)

call lock

{[t � u] ∗ ptcb(t) ∗ curr(u, t) ∗ RQ(u)
∗(a0,a1,a2,v0,ra 7→ CPUS[u], , , ,)
∗K(bp,13, :: :: CPUS[u] :: w1 :: w2 :: w3 :: ret)}

lw a2, 8(sp)

lw a0, OFF RQ(a2)

call deq

bz v0, sched ret

{[t � u] ∗ ptcb(t) ∗ curr(u, t) ∗ RQ(u) ∗ ∃∃ t ′ . ∗ 〈t ′〉 ∗ ptcb(t ′)
∗(a0,a1,a2,v0,ra 7→ , , t ′,NULL,)
∗K(bp,13, :: :: CPUS[u] :: w1 :: w2 :: w3 :: ret)}

Fig. 35.Ext. 3: Verification of scheduler (part one)

54

{[t � u] ∗ ptcb(t) ∗ curr(u, t) ∗ RQ(u) ∗ ∃∃ t ′ . ∗ 〈t ′〉 ∗ ptcb(t ′) ∗ (a0,a1,a2,v0,ra 7→ , , t ′,NULL,)
∗K(bp,13, :: :: CPUS[u] :: w1 :: w2 :: w3 :: ret)}

sched cont:

sw v0, 0(sp)

lw a2, 8(sp)

lw a1, OFF CURR(a2)

sw a1, 4(sp)

lw a0, OFF RQ(a2)

{[t � u] ∗ ptcb(t) ∗ curr(u, t) ∗ RQ(u) ∗ ∃∃ t ′ . ∗ 〈t ′〉 ∗ ptcb(t ′)
∗(a0,a1,a2,v0,ra 7→ CPUS[u]+OFF RQ, t,CPUS[u],NULL,)
∗K(bp,13, t ′ :: t :: CPUS[u] :: w1 :: w2 :: w3 :: ret)}

call enq

{[t � u] ∗ (〈t〉 −∗RQ(u)) ∗ curr(u, t) ∗ ∃∃ t ′ . ∗ 〈t ′〉 ∗ ptcb(t ′)
∗(a0,a1,a2,v0,ra 7→ CPUS[u]+OFF RQ, t,CPUS[u], ,)
∗K(bp,13, t ′ :: t :: CPUS[u] :: w1 :: w2 :: w3 :: ret)}

lw a2, 8(sp)

lw a1, 0(sp)

sw a1, OFF CURR(sp)

lw a0, 4(sp)

{[t � u] ∗ (〈t〉 −∗RQ(u)) ∗ curr(u, t ′) ∗ ∃∃ t ′ . ∗ 〈t ′〉 ∗ ptcb(t ′)
∗(a0,a1,a2,v0,ra 7→ t, t ′,CPUS[u], ,)
∗K(bp,13, t ′ :: t :: CPUS[u] :: w1 :: w2 :: w3 :: ret)}

cswitch

{∃∃ u′ . [t � u′] ∗ ptcb(t) ∗ curr(u′, t) ∗ ∃∃ t ′′ . ∗ 〈t ′′〉 ∗ (ANGt′′ −∗RQ(u′))
∗(a0,a1,a2,v0,ra 7→ , , , ,) ∗ K(bp,13, :: :: :: w1 :: w2 :: w3 :: ret)}

cpuid a0

call getcpu

{∃∃ u′ . [t � u′] ∗ ptcb(t) ∗ curr(u′, t) ∗ ∃∃ t ′′ . ∗ 〈t ′′〉 ∗ (ANGt′′ −∗RQ(u′))
∗(a0,a1,a2,v0,ra 7→ u′, , ,CPUS[u′],) ∗ K(bp,13, :: :: :: w1 :: w2 :: w3 :: ret)}

sw v0, 8(sp)

lw a0, OFF LOCK(v0)

call unlock

{∃∃ u′ . [t � u′] ∗ ptcb(t) ∗ curr(u′, t) ∗ (a0,a1,a2,v0,ra 7→ , , ,CPUS[u′],)
∗K(bp,13, :: :: CPUS[u′] :: w1 :: w2 :: w3 :: ret)}

lw a0, 12(sp)

lw a1, 16(sp)

lw a2, 20(sp)

lw ra, 24(sp)

addi sp, 28

{∃∃ u′ . [t � u′] ∗ ptcb(t) ∗ curr(u′, t) ∗ (a0,a1,a2,v0,ra 7→ w1,w2,w3, , ret) ∗ K(bp,20)}

ret

Fig. 36.Ext. 3: Verification of scheduler (part two)

55

{(a0,a1,ra 7→ lk,w1, ret) ∗ K(bp,1) ∗ ♯(lk ∈ dom(Σ))}
lock : /* a simplest spin lock */

addi sp, -4

sw a1 0(sp)

{(a0,a1,ra 7→ lk, , ret) ∗ K(bp,0,w1) ∗ ♯(lk ∈ dom(Σ))}
lock loop:

movi a1, 1

{(a0,a1,ra 7→ lk,1, ret) ∗ K(bp,0,w1) ∗ ♯(lk ∈ dom(Σ))}
xchg a1, 0(a0)

{∃∃ x.(a0,a1,ra 7→ lk,x, ret) ∗ K(bp,0,w1) ∗ ((♯x=1)∨∨(♯x=0) ∗ ∆(lk)) ∗ ♯(lk ∈ dom(Σ))}
bz a1, lock ret

jmp lock loop

{(a0,a1,ra 7→ lk,0, ret) ∗ K(bp,0,w1) ∗ ∆(lk) ∗ ♯(lk ∈ dom(Σ))}
lock ret:

lw a1, 0(sp)

addi sp, 4

ret

{(a0,a1,ra 7→ lk,w1, ret) ∗ K(bp,1) ∗ ∆(lk)}
unlock:

addi sp, -4

sw a1, 0(sp)

movi a1, 0

xchg a1, 0(a0)

{(a0,a1,ra 7→ lk,0, ret) ∗ K(bp,0,w1)}

lw a1, 0(sp)

addi sp, 4

{(a0,a1,ra 7→ lk,w1, ret) ∗ K(bp,1)}

ret

Fig. 37.Ext. 3: Verification of lock/unlock

56

{[t � u] ∗ ptcb(t) ∗ (a0,a1,v0,ra 7→ ,w1, , ret) ∗ K(bp,10)}

loadbalance:

subi sp, 24

sw ra, 20(sp)

sw a1, 16(sp)

{[t � u] ∗ ptcb(t) ∗ (a0,a1,v0,ra 7→ ,w1, , ret) ∗ K(bp,4, :: :: :: :: w1 :: ret)}

cpuid a0

call getcpu

{[t � u] ∗ ptcb(t) ∗ (a0,a1,v0,ra 7→ u,w1,CPUS[u],) ∗ K(bp,4, :: :: :: :: w1 :: ret)}

sw v0, 12(sp)

mov a0, v0

call busiest cpu

bz Llb end

{[t � u] ∗ ptcb(t) ∗ ∃∃ u′ .(a0,a1,v0,ra 7→ CPUS[u],w1,CPUS[u′],) ∗ (♯u′ 6= u)
∗K(bp,4, :: :: :: CPUS[u] :: w1 :: ret)}

sw v0, 8(sp)

lw a0, 12(sp)

{[t � u] ∗ ptcb(t) ∗ ∃∃ u′ .(a0,a1,v0,ra 7→ CPUS[u],w1,CPUS[u′],) ∗ (♯u′ 6= u)
∗K(bp,4, :: :: CPUS[u′] :: CPUS[u] :: w1 :: ret)}

sub v0, a0

bgt v0, Llb swap

{[t � u] ∗ ptcb(t) ∗ ∃∃ u′ .(a0,a1,v0,ra 7→ CPUS[u],w1, ,) ∗ (♯u> u′)
∗K(bp,4, :: :: CPUS[u′] :: CPUS[u] :: w1 :: ret)}

sw a0, 4(sp)

lw a1, 8(sp)

sw a1, 0(sp)

{[t � u] ∗ ptcb(t) ∗ ∃∃ u′ .(a0,a1,v0,ra 7→ CPUS[u],CPUS[u′],CPUS[u′],) ∗ (♯u> u′)
∗K(bp,4,CPUS[u′] :: CPUS[u] :: CPUS[u′] :: CPUS[u] :: w1 :: ret)}

jmp Llb lb

Llb swap:

sw a0, 0(sp)

lw a1, 8(sp)

sw a1, 4(sp)

{[t � u] ∗ ptcb(t) ∗ ∃∃ u′ .(a0,a1,v0,ra 7→ CPUS[u],CPUS[u′],CPUS[u′],) ∗ (♯u> u′)
∗K(bp,4,CPUS[u] :: CPUS[u′] :: CPUS[u′] :: CPUS[u] :: w1 :: ret)}

Fig. 38.Ext. 3: Verification of loadbalance (part one)

57

{[t � u] ∗ ptcb(t) ∗ ∃∃ u′ .(a0,a1,v0,ra 7→ CPUS[u],CPUS[u′],CPUS[u′],) ∗ (♯u> u′)
∗K(bp,4,cpua:: cpub:: CPUS[u′] :: CPUS[u] :: w1 :: ret)
∗(♯u> u′ ∧ cpua=CPUS[u] ∧ cpub=CPUS[u′])∨∨(♯u< u′ ∧ cpua=CPUS[u′] ∧ cpub=CPUS[u])}

Llb lb:

lw a1, 4(sp)

lw a0, OFF LOCK(a1)

call lock

lw a1, 8(sp)

lw a0, OFF LOCK(a1)

call lock

{[t � u] ∗ ptcb(t) ∗ ∃∃ u′ .(a0,a1,v0,ra 7→ CPUS[u],CPUS[u′],CPUS[u′],) ∗ (♯u> u′)
∗K(bp,4,cpua:: cpub:: CPUS[u′] :: CPUS[u] :: w1 :: ret)
∗(♯u> u′ ∧ cpua=CPUS[u] ∧ cpub=CPUS[u′])∨∨(♯u< u′ ∧ cpua=CPUS[u′] ∧ cpub=CPUS[u]) ∗ Σ(u) ∗ Σ(u′)}

lw a1, 8(sp)

lw a0, OFF LOCK(a1)

call deq

bz v0, Llb end

lw a1, 12(sp)

lw a0, OFF LOCK(a1)

mov a1, v0

call enq

lw a1, 8(sp)

lw a0, OFF LOCK(a1)

call unlock

lw a1, 4(sp)

lw a0, OFF LOCK(a1)

call unlock

{[t � u] ∗ ptcb(t) ∗ (a0,a1,v0,ra 7→ CPUS[u],CPUS[u′],CPUS[u′],) ∗ (♯u> u′)
∗K(bp,4, :: :: CPUS[u′] :: CPUS[u] :: w1 :: ret)}

Llb end:

sw a1, 16(sp)

sw ra, 20(sp)

addi sp, 24

{[t � u] ∗ ptcb(t) ∗ (a0,a1,v0,ra 7→ CPUS[u],CPUS[u′],CPUS[u′],) ∗ K(bp,10)}

ret

Fig. 39.Ext. 3: Verification of loadbalance (part two)

58

9 Related work

Gotsman and Yang [7] proposed a two-layer framework to verify schedulers. The proof
system in the lower-layer is for verifying code manipulating TCBs, while the upper-
layer is for verifying the rest concurrent code of the kernel. Since thread queues and
TCBs are hidden from the upper-layer, one thread could not have any knowledge of the
others, thus their proof system is unable to verify the scheduling pattern of II and III.
Similar to our assertionRThrd(· · ·), they introduced a primitive predicateProcess(G) to
relate TCBs in the lower-layer with threads in the upper-layer, but there is no counter-
part of〈t〉 in their framework.

Fenget al. also verified a kernel prototype [3] in a two-layer framework. Code
manipulating TCBs needs to be verified in the lower-layer of their framework. The
TCBs are connected with actual threads in the upper layer by an interpretation function
of their framework. Our use of global invariant is similar totheir use of the interpretation
function. In the upper-layer, information of threads is completely hidden. Thus, their
framework also fails to support the verification of the scheduler pattern of II and III.

Ni et al. verified a small thread manager with a logic system [16,15] that supports
modular reasoning about code including embedded code pointers. In their logic, how-
ever, there is no abstraction of threads. Multithreaded programs are seen as sequential
interleaving of pieces of code in low-level continuation passing style. Therefore, TCBs
with embedded code pointers can be treated as normal data. But since the reasoning
level of their method is too low without any abstraction, TCBs have to be specified by
over-complicated logic expressions and then it is very difficult to apply their method to
realistic code.

Klein et al. verified a micro-kernel, seL4 [12], where the kernel code runs sequen-
tially. Thus they used a sequential proof system to verify most of the kernel code. The
scheduling pattern of seL4 is similar to our pattern I, but they trusted the code doing
context saving and loading, and left it unverified. Since they do not verify user processes
upon the kernel, they need not relate TCBs in the kernel with actual user processes.

Garganoet al. used a framework CVM [6] to build verified kernels in the Verisoft
project. CVM is a computational model for concurrent user processes, which interleave
through a micro-kernel. Starostin and Tsyban presented a formal approach [20] to rea-
son about context switch between user processes. The context switch code and proofs
are integrated in a framework for building verified kernels (CVM) [11]. Their frame-
work keeps a global invariant,weak consistency, to relate TCBs in the kernel with user
processes outside the kernel. Since the kernel itself is sequential, their process schedul-
ing follows pattern I. The other two patterns cannot be verified.

10 Conclusion

In this paper, we proposed a novel approach to verify concurrent thread management
code, which allows multiple threads to modify their own thread control blocks. The as-
sertions of the code and inference rules of the proof system are straightforward and easy
to follow. Moreover, it can be easily extended to support other kernel features (e.g., pre-
emptive scheduling, multi-core systems, synchronizations) and to be practically applied
to realistic OS code.

59

References

1. R. S. Engelschall. Portable multithreading: the signal stack trick for user-space thread cre-
ation. InProc. of ATEC’00, pages 20–20, Berkeley, CA, USA, 2000. USENIX Association.

2. D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exokernel:an operating system architecture
for application-level resource management. InProceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP ’95), pages 251–266, Copper Mountain Resort, Col-
orado, December 1995.

3. X. Feng, Z. Shao, Y. Guo, and Y. Dong. Combining domain-specific and foundational logics
to verify complete software systems. InProc. VSTTE’08, pages 54–69, Toronto, Canada,
October 2008.

4. X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni. Modular verification of assembly code
with stack-based control abstractions. InProc. PLDI’06, pages 401–414, June 2006.

5. B. Ford and S. Susarla. Cpu inheritance scheduling. InProc. OSDI’96, OSDI ’96, pages
91–105, New York, NY, USA, 1996. ACM.

6. M. Gargano, M. Hillebrand, D. Leinenbach, and W. Paul. On the correctness of operating
system kernels. In J. Hurd and T. F. Melham, editors,Proc. TPHOLs’05, volume 3603 of
Lecture Notes in Computer Science, pages 1–16. Springer, 2005.

7. A. Gotsman and H. Yang. Modular verification of preemptiveos kernels. InProc. ICFP’11,
pages 404–417, Tokyo, Japan, 2011. ACM.

8. Y. Guo, X. Feng, Z. Shao, and P. Shi. Modular verification ofconcurrent thread management
(technical report).http://kyhcs.ustcsz.edu.cn/~guoyu/sched/, June 2012.

9. J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum. Minix 3: a highly reliable,
self-repairing operating system.SIGOPS Oper. Syst. Rev., 40:80–89, July 2006.

10. M. Hohmuth and H. Tews. The vfiasco approach for a verified operating system. InPro-
ceedings of the 2nd ECOOP Workshop on Programming Languagesand Operating Systems,
2005.

11. T. In der Rieden and A. Tsyban. CVM – A verified framework for microkernel programmers.
In Proc. SSV’08, volume 217C ofElectronic Notes in Theoretical Computer Science, pages
151–168. Elsevier Science B.V., 2008.

12. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. En-
gelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S.Winwood. seL4: Formal
verification of an OS kernel. InProc. SOSP’09, pages 207–220, Big Sky, MT, USA, Oct
2009. ACM.

13. R. Love.Linux Kernel Development (2nd Edition) (Novell Press). Novell Press, 2005.
14. M. K. McKusick and G. V. Neville-Neil.The Design and Implementation of the FreeBSD

Operating System. Pearson Education, 2004.
15. Z. Ni and Z. Shao. Certified assembly programming with embedded code pointers. InProc.

POPL’06, pages 320–333, Jan. 2006.
16. Z. Ni, D. Yu, and Z. Shao. Using XCAP to certify realistic systems code: Machine context

management. InProc. TPHOLs’07, volume 4732 ofLecture Notes in Computer Science,
pages 189–206. Springer-Verlag, September 2007.

17. P. W. OHearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci., 375(1-
3):271–307, 2007.

18. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. InLICS ’02:
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, pages 55–
74, Washington, DC, USA, 2002. IEEE Computer Society.

19. J. H. Saltzer and M. F. Kaashoek.Principles of Computer System Design: An Introduction.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2009.

60

http://kyhcs.ustcsz.edu.cn/~guoyu/sched/

20. A. Starostin and A. Tsyban. Verified process-context switch for C-programmed kernels. In
J. Woodcock and N. Shankar, editors,Proc. VSTTE’08, volume 5295 ofLecture Notes in
Computer Science, pages 240–254, Toronto, Canada, Oct. 2008. Springer.

61

	Modular Verification of Concurrent Thread Management (Extended)

