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Abstract. Thread management is an essential functionality in OS kerHew-
ever, verification of thread management remains a challehgeto two conflict-
ing requirements: on the one hand, a thread manager—amphaiow the thread
abstraction layer—should hide its implementation detail$ be verified indepen-
dently from the threads being managed; on the other hanthrtbad management
code in many real-world systems is concurrent, which mighékecuted by the
threads being managed, so it seems inappropriate to aftstraads away in the
verification of thread managers. Previous approaches arekeerification view
thread managers as sequential code, thus cannot be applibckad manage-
ment in realistic kernels. In this paper, we propose a navellayer framework
to verify concurrent thread management. We choose a lowsraation level
than the previous approaches, where we abstract away thextswitch routine
only, and allow the rest of the thread management code toamcucrently in the
upper level. We also treat thread management data as ahstsaarces so that
threads in the environment can be specified in assertionb@ameasoned about
in a proof system similar to concurrent separation logic.

1 Introduction

Thread scheduling in modern operating systems providesittotionality of virtualiz-
ing processors: when a thread is waiting for an event, itgfive control of the processor
to another thread to make the illusion that each thread sas\it processor.

Inside a kernel, a thread manager supervises all threadigyistem by manip-
ulating data structures called thread control blocks (TCBSTCB is used to record
important information of a thread, such as the machine cb(oe processor state), the
thread identifier, the status description, the location sind of the stack, the priority
for scheduling, and the entry point of thread code. The TQBsoften implemented
using data structures such as queues for ready and waitiegds Clearly, modifying
thread queues and TCBs would drastically change the baisadidhreads. Therefore,
a correct implementation of thread management is cruciag@ranteeing the whole
system safety. Unfortunately, modular verification of reakld thread management
code remains a big challenge today.

The challenge comes from two apparently conflicting goalishvve want to achieve
at the same time: abstraction (for modular verification) afiitiency (for real-world



usability). On the one hand, TCBs, thread queues, and teadrscheduler are specifics
used to implement threads so they should sit at a lower atistndayer. It is natural to
abstract them away from threads, and to verify threads amthttead scheduler sepa-
rately at different abstraction layers. Previous work Hasag it is extremely difficult
to verify them together in one logic system[16]. On the otieand, in many real-world
systems such as Linux-2.6.10[13] and FreeBSD-5.2 [14]tlihead scheduler code
itself is alsoconcurrentin the sense that there may be multiple threads in the system
running the scheduler at the same time. For instance, wheread invokes a thread
scheduler routineg(g.,cleaning up dead threads, load balancing, or thread sahgglul
and traverses the thread queue, it may be preempted by btleaxds who may call
the same routine and traverse the queue too. Also, in sonensy$1¥,1] the thread
scheduling itself is implemented as a separate threaduhatin concurrent with other
threads. In these cases, we need to verify thread schedukefmulti-threaded” logic,
taking threads into account instead of abstracting thenyawa

Earlier work on thread scheduling verification fails to asfa the two goals at the
same time. Néet al. [16] verified both the thread switch and the threads in onielfdd)],
which treats thread return addresses as first-class codeepiAlthough their method
may support concurrent thread schedulers in real systéruses the abstraction of
threads completely, and makes the logic and specificatmmgsdmplex for practical
use. Recent work[3,7] adopts two-layer verification frarogg to verify concurrent
kernels. Kernel code is divided into two layers: sequermiale in the lower layer and
concurrentin the upper layer. In their frameworks, theytpatcode manipulating TCBs
(e.g.thread schedulers) in the low layer, and hide the TCBs o&tiigén the upper layer
so that the threads cannot modify them. Then they use seguprigram logics to
verify thread management code. However, this approachtissadle for many realistic
kernels where thread managers themselves are concureetii@threads are allowed
to modify the TCBs. Other work on OS verification[12,10] oelypports non-reentrant
kernelsj.e.,there is only one thread running in the kernel at any time.

In this paper, we propose a more natural framework to veriycarrent thread
managers. Our framework follows the two-layer approachc@murrent code at the
upper layer can be verified modularly with thread abstrastiblowever, the abstraction
level of our framework is much lower than previous framevedi 7]. Most part of the
code manipulating thread queues and TCBs is put in the upper &nd can be verified
as concurrent code. Our framework successfully achievissvamification goals: it not
only allows abstraction and modular verification, but alspports concurrency in real-
world thread management.

Our work is based on previous work on thread scheduler vatiifio, but makes the
following new contributions:

— We introduce a fine-grained abstraction in our two-layeifioation framework.
The abstraction protects only a small part of sensitive taf&Bs, and at the same
time allows multiple threads to modify other part of TCBsedafOur division of
the two abstraction layers is consistent with many realsgst It is more natural
and can support more realistic thread managers than prewiork.

— In the upper layer, we introduce the idea of treatingads as resource3he ab-
stract thread resources can be specified explicitly in tlserien language, and
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Fig. 1. Three patterns of scheduling

their use by concurrent programs can be reasoned about artydollowing con-
current separation logic (CSL) [17]. By enforcing the ingat that the abstract
resource is consistent with the concrete thread meta dataawensure the safety
of the accesses over TCBs and thread queues inside threads.

— Because of the fine-grained abstraction of our approachse¢hwntics of thread
scheduling do not have to be hardwired in the logic. Theesfour framework
can be used to verify various implementation patterns aatirmanagement. We
show how to verify the three common patterns of thread sdivegin realistic OS
kernels (while previous two-layer frameworkg [3,7] canyoverify one of them).

— In our extended TR8], we also use our framework to verifg#t schedulers with
hardware interrupts, scheduling over multiprocessor eitil-balancing, and a set
of other thread management routines such as thread crgjaiioand termination.

The rest of this paper is organized as follows: we first infiaa simplified abstract
machine model for the higher-layer of our framework in $&¢o3how our main idea,
we propose in Se€l 4 our proof system for concurrent threlaeldsding code over the
abstract machine. We show how to verify two prototypes oédciters based on context
switch in Sed b. We compare with related work in $éc. 9, amtlcmle in Sed.10.

2 Challenges and our approach

In this section, we illustrate the challenges of verifyiragle of thread scheduling by
showing three patterns of schedulers and discuss the aigficissues. Then we infor-
mally explain the basic ideas of our approach.

2.1 Three patterns of thread scheduling

By deciding which thread to run next, the thread schedulezsponsible for best uti-

lizing the system and makes multiple threads run concuytélitie scheduling process
consists of the following steps: selecting which threadsiomext in a thread queue by
modifying TCBs, saving the context data of the current ttyeand_loading the con-
text data of the next thread. Context data is the state of theegsor. By saving and
loading context data, the processor can run in multiplerobfiows, i.e., threads. Usu-

ally, context data can be saved on stacks or TCBs (we assuthis jpaper that context
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Fig. 2. Abstraction in verification framework

data is saved in TCBs for the brevity of presentation). Tlageevarious ways to imple-
ment thread schedulers. In Fig. 1 we show three common inggléation patterns, all
modeled from real systems.

Pattern (1) is popular among embedded OS kernelg.(FreeRTOS) and some
micro-kernels €.g.,Minix [8] and Exokernel[[2]). The scheduler in this pattesnii-
voked by function calls or interrupts. Thereafter, the sithiag is done in the following
steps: (1) saving the current context data, (2) finding tixétheead, and (3) loading the
context data of the next thread (and switching to it imglditrough function return).

In pattern (Il), the scheduling process is a function with tbllowing steps: (1)
finding the next thread firstly, (2) performing context swi{saving the current context
data, loading the next one, and jumping to the next threadddiately), (3) and running
the remaining code of the function when the control is svétthack from other threads.
This patternis modeled from some mainstream monolithinddsre.g.,Linux [13], and
FreeBSD). Some embedded kernelg(,RTEMS and uClinux) adopt it too. Note that
both the involved threads should be allowed to access teadqueue and TCBs when
calling the scheduler.

Pattern (Ill) uses a separate thread, cafleldeduler threadto do scheduling. One
thread may perform scheduling by doing context switch tosttteeduler thread. The
scheduler thread is a big infinite loop: finding the next trgerforming context switch
to the next thread; and looping after return. This pattemlma seen in the GNU-pth
thread library, MIT-xv6 kernel, L4::Kagtc. Similar to pattern (I1), all involved threads
in this pattern should be allowed to access the TCB of thedsdbethread and the
thread queue.

2.2 Challenges

As we can see from the patterns in Hi§). 1, the control flow insttieeduling process
is very complicated. Threads switch back and forth via malaijing the thread queues
and TCBs. Itis very natural to share TCBs and the thread caewag threads in order
to support all these scheduling patterns. On the other litsisdmportant to ensure that
the TCBs are accessed in the right way. The system would gognfpfor instance, a
thread erased the context data of another by mistake, orgeadthread back into the
ready thread queue.

To guarantee the safety of the scheduling process, we nifibt¥uo requirements:

(1) No thread can incorrectly modify the context data in TCBs
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ThreadA ThreadB
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Fig. 3. Abstract thread res. vs. concrete thread res.

(2) The scheduler should know the status of each thread thitbad queues and decide
which to run next.

To satisfy the requirement (1), some previous work][3,7]ms@ two-layer-based
approach and protects the TCBs throwdistraction where the TCBs are simply hid-
den from kernel threads and become inaccessible. This agipiean be used to verify
schedulers of pattern (1), for which we show the abstradfimmin Fig.[2 (a). Threads
above the line cannot modify TCBs, while the scheduler iswehis line and has full
accesses to them. The lower-layer scheduler provides draabisiterface to the veri-
fication of concurrent thread code at the upper layer. Sincedifies the TCBs in the
scheduling time only, we can view the scheduler as a segi&mtiction which does not
belong to any thread and can be verified by a conventionalddsigie logic. However,
this approach cannot verify the other two patterns, nofiillsithe requirement (2) for
concurrent schedulers, where the TCBs are manipulatedio@mtly (not sequentially
as in pattern (1)) and should be known by threads. That is,ammat completely hide
the TCBs from the upper-layer concurrent threads for pagtéit) and (ll1).

2.3 Our approach

If we inspect the TCB data carefully, we can see only a smatlgfahe data is crucial
to thread behaviors and cannot be accessed concurrenglyinhecessary to access it

concurrently either. The data includes the machine couwlatet and the stack location.
We call themsafety-criticalvalues. Some values can be modified concurrently, but the
correctness of those is still important to the safety of ekl e.g., the pointers used to
organize thread queues and the status field belong to tidokivalues. Other values of
TCBs have nothing to do with the safety of the kernel and cambdified concurrently
definitely,e.g.,the name of a thread or debug information.

Lowering the abstraction levelTo protect the safety critical part of TCBs, we lower
the abstraction line, as shown in Fig. 2 (b). In our framewtk safety-critical data of
TCBs is under the abstraction line and hidden from threalis.cbrresponding oper-
ations such as context saving, loading and switching areaabsd away from threads
too, with only interfaces exposed to the upper layer. Themopiart of TCBs are lifted
above this line, which can be accessed by concurrent threads
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Building abstract threads.We still need to ensure the concurrent accesses of non-
safety-critical TCB data are correct. For instance, we oamtlow a dead thread to

be put onto a ready thread queue. To address this issue, Vdealnsiract threads to
carry information of threads from TCBs to guide modificatidny each other. In Fi] 3,

we use the notatioft] to specify the running thread, and the notat{on for a ready
thread. Here is the identifier of the thread. With the knowledge about tkistence of

a ready threa® pointed bynext (i.e., (B)), we know it is safe to switch to it via the
operationcswitch(A,next). Since abstract threads can be described in specifications,
it allows us to write more intuitive and readable specifmasi for kernel code.

Treating abstract threads as resourcdske heap resources, abstract thread resources
can be either local or shared. We canadmership transfersn thread resources. When
context switches, one thread will transfer some of the absthread resources (shared)
along with the shared memory to the next thread. As showngrFiwhen thread A
context switches to thread B, the notatjghwill be changed tgA) after context saving;

(A) and(B) are transferred to the thread B along with the shared menespurceext;
then(B) will be changed tdB] after context loading. With transferred thread resources,
threadB will know there is a ready threaslto switch to. Therefore, by treating abstract
threads as resources, we find a simple and natural way tofg@ea reason about
context switches. We design a proof system similar to CSLnfodular verification
with the support of ownership transfers on thread resources

Defining concrete thread resource3po establish the soundness of our proof system,
we must ensure that the abstract threads can be reified bgaratete threads. The
concrete representation of abstract threads, includaaksT CBsetc, can be defined
from a global point of view. In Figl]3, suppose that thread Atsning, we ensure
that there are two blocks of resources in the system. Oneeaf th the running thread
CThrdps and the other is a ready threrthrdg. They correspond to the abstract threads
[A] and(B) in the assertions of thread A. We use the concrete threadne=to specify
the global invariant of the machine, which allows us to prilnesoundness of our proof
system.

In summary, we propose a new verification framework basederndeas above,
which allows us to verify concurrent thread management ofidds in a modular way.

abstract machine (logical abstract threads)

3 Machine model physical machine (no concept of thread)

In this section, we define a two-layer machine model. The ighymachine we use is
similar to realistic hardware, where no concept of threastexBased on it, we define
an abstract machine with logicabstract threadswhose meta-data is abstracted into
a thread pool. Moreover, the operation of context switchbistracted as a primitive

abstract instruction.

3.1 Metalanguage

First of all, a mechanized meta-language is required to &g all the concepts in
this paper, such as machine models, programs, specifisaiidarence rules, theorems
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no concept of thread

(PhyMach) W = (C,M,R,pc)
(PhyCode) C = {f:i}*
(PhyMem) M = {1:w}* (1=4n)
(PhyRegFile) R = {r:w}*

(Register) r = v0|a0|al|a2]|sp|ra

(Instruction) i = add rq, rs|addi ry, w
| mov ry, rs|movi ry, w
| 1w rt, w(rs) | swrt, w(Ts)
| jmp £ | call f | ret

| subi ry, w| bz ry, £
Fig. 4. Physical machine model

and proofs. The meta-language we use is the calculus oftivdwaonstructions (CiC),
which is supported by the proof assistant Coq.

Term A,B ::= Set | Prop | Type
| X|AX:A.B|AB|A—B|AAB|AV B|True|False
| ¥X:A.B|3X:A.B|inductive def]---

CiC is a typed lambda calculus, and its syntax follows theveation of common
lambda calculi. For examplé, — B represents function spaces. It also means logical
implication whenA andB have sorProp. In addition,Prop is the universe of all propo-
sitions, Set is the universe of all data sets, amgpe is the (stratified) universe of all
terms.

3.2 Physical machine

The formal definition of the physical machine is shown in EigA physical machine
configurationw consists of a code block, a mutable memoryi, a register filerR, a
program countegc. The simplified machine has 6 general registers. The regists
used for passing the return-value of functiosts a1, a2 are used for passing arguments.
The registesp always points to the top of stack, growing downwards. Théstegra
is used for storing the return address of functions. The tolek C is a mapping from
code labelg to instructions.. Some common instructions are defined to write programs
in this paper, including arithmetic, memory instructionsbading and storing values,
jump and function call/ret instructions. We assume thatéhgth of every instruction
is equal to onei.e., if an instruction is at, the next instruction will be at+1. For
simplicity, we omit many realistic hardware detaisg., address alignment and bits-
arithmetic.

For all kinds of partial mappings, we useto denote the disjoint union of two
mappings, and use the notation liRgr : w} to denote the updating of a mapping .

We use a relatiofv — W’ to specify the operational semantics.
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(AbsMach) W = (C,Spc)
(State) S 1= (M,RP)
(AbsCode) C = {f:c}*
(Mem) M = {l:w}*
(RegFile) R = {r:w}*
(TD)  t = w
(Pool) P = {t:T}
(Thrd) T = run](rdy,R)
(Absinstr) ¢ &= cswitch]|i

Fig. 5. Abstract machine model

C(pc)=i (M,R,pc) N (M, R’,pc’)
(C7M7R7PC) H (C7MI7R/7PC/)

where the state transition relatigil, R, pc) 2y (M',R’,pc’) is defined in Figlh.

3.3 Abstract machine

The abstract machine is shown in Fig. 5 (right side), whereaitls are introduced at
this level. It is more intuitive to build a proof system (SEB.to verify concurrent
kernel code at this level. A abstract machine configuradas a triple of a read-only
code blockC, a mutable machine stag and a program countee. The code block
of the abstract machine is a partial mapping from labels abstract instructions. A
machine stat& consists of a memory blodW, a register fileR and a thread podt. A
memory block is a partial mapping from memory addressesmachine words. A
thread pooP is a partial mapping from thread IDso abstract threads. Each abstract
thread has a tag specifying its status, which is either nmun) or ready (dy). Each
ready thread has a copy of saved register file as its machitexdalata. The abstract
instructionsinclude an abstract operation of context@wiswitch) and other physical
machine instructions defined on the left. We model the ofmratsemantics using the
step transition relatiow — W’ defined in Figl-B. In the physical machine, this abstract
instruction can be implemented using normal machine iottus.

cswitch:
sw ra, 0(a0) lw ra, 0(al)
sw vO0, 4(a0) 1w v0, 4(al)
sw a0, 8(a0) lw a0, 8(al)

sw a2, 16(a0) lw sp, 20(al)
sw sp, 20(a0) lw al, 12(al)

|
|
|
sw al, 12(a0) | lw a2, 16(al)
|
|
| ret

The machine context, a register file, can be defined as thetsteuas below:
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(M,R,pc) < (M',R/,pc’)
if i = | then

addry, rs | M'=M AR =R{rq:R(rq)+R(rs)} A pc’=pc+1
addirgq, w | M'=M AR =R{rq:R(rg)+w} A pc’=pc+1
subrg, rs | M=M AR =R{rq:R(rq)—R(rs)} A pc’=pc+1
subirg, w | M'=M AR =R{rq:R(rq)—w} A pc’=pc+1

movry, rs | M=M AR =R{rq:R(rs)} A pc'=pc+1
movirg, w | M=M AR =R{rq:w} Apc’=pc+1

1wy, w(rs) | M=M AR =R{rt: M(R(rs)+w)} A pc’ =pc+1
swrt, w(rs) | M'=M{(R(rs)+w) : R(rt)} AR'=R A pc’=pc+1

call f M'=M AR =R{ra:pc+1} Apc'=f

jmp £ M=MAR =R Apc=£

ret M =M AR =R A pc’=R(ra)

bz ry, f M=MAR =R Apc=f if R(rt)=0

M =MAR =R Apc’=pc+1 if R(xrt)#0

Fig. 6. Operational semantics of physical machine

struct context {

int ra; int vO0;
int al; int al;
int a2; int sp;

};

The abstract instructiogswitch requires two thread IDs passed as argumends amnd
a1, one of which is tagged byin and the other is taged bty in the thread pool. After
cswitch, the two abstract threads exchange tags, and the controboégsor is passed
from the old thread to the new one. The registers of old thezadsaved in the source
abstract thread and the registers in the destination tfaealdaded into machine state.
Except forcswitch, the state transitions of other instructions are similahtse of the
physical machine.

3.4 Machine translation

In our proof system, once a program is proved safe at theaaibstrachine level, it
should be proved safe as well at the physical machine leveld&fine a relation be-
tween abstract machine with physical machinel, W in Fig.[d. . A code block of the
abstract machine is translated to a code block at the pHysied by the replacing of
cswitch with a function call to the code of implementation of contewitch, Ccs. A
thread pooP is translated into a block of memory with the context datallothaeads,
each of which is specified byiqt,R). The whole memory of the physical machine con-
sists of two parts: the memory translated frénand the memory translated frokn.
The translations ofl andR are straightforward.

We give a formal definition of the safety property:
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(AbsMach) W = (C,Spc)
(State) S (M,R P)
(AbsCode) C = {f:c}*
(Mem) M o= {l:w}*
(RegFile) R = {r:w}*
(TID) t = w

(Pool) P = {t:T}*
(Thrd) T = run| (rdy,R)
(Absinstr) ¢ &= cswitch|i

Fig. 7. Definition of abstract machine

((M,R.P),pc) < (M',R,P),pc)

if c= | then
i ((M,R),pc) < ((M",R),pc’) A P=P'
cswitch IR, P".M=M" AR'=R{ra:pc+1} At=R(a0)

At'=R(al) Apc’=R/(ra)

AP ={t:run, t': (rdy,R)}wP”

AP ={t: (rdy,R"), t':run}wP”

RandR is complete.

((M,R),pe) = ((M',R) pc’)

if i= then
addry, rs | M'=M AR =R{rq:R(rq)+R(rs)} A pc’=pc+1
addirg,w | M'=M AR =R{rq:R(rq)+w} A pc=pc+1
movry,rs | M=MAR=R{rq:R(rs)} Apc’=pc+1
movirg,w | M'=M AR =R{R(rq):w} Apc’=pc+1
1w i, w(rs) | M'=M AR =R{rt : M(R(xs)+w)} A pc’=pc+1

sw rt, w(Ts)

M’'=M{(R(rs)+w) : R(rt)} AR =RA pc’=pc+1

call f M'=M AR =R{ra:pc+1} Apc'=f

jmp £ M'=M AR =RApc'=£

ret M'=M A R=RA pc’=R(ra)

bz 1, £ M'=M AR =RApc'=f if R(rt)=0

M'=M AR =RApc'=pc+1 if R(xt)#0

Clpe)=c  (Spc) < (S,pc’)
(C,Spc) — (C,S,pc)

Fig. 8. Operational semantics of abstract machine (part)

10




v € dom(C).C(£) | C(£)

C U (CwCes) illi cswitch |} call fegyiteh
Vr.R(r)=R(r) V1 edomM).M(1)=M(1)
RJR M | M
PIM P UM M=mdt,R) JR.M=mdt,R’)
(PYP) | (MuwM') {t:(rdy,R)} | M {t:(run)} § M

cCiC M{yM; PUM, RUR MMM,
(C7 (M7 R7 P)pC) u (C,M,R,pC)

wheremg1,R) £ {1 :R(ra),1+4 :R(v0),1+8 :R(a0),
1+12:R(al),1416 :R(a2),1+20:R(sp)}

Fig. 9. Relation between abstract machine and physical machine

Safe(i+1,W) 2 (IW.W —s W) A YW .W — W’ — Safe{i,W')
Safe{O,W) £ True

SafgW) £ Vi.Safe{i,W)

Safe{i+1, W) & AW . Wr— W) A YW W r— W — Safe(i, W)
Safe{0,W) £ True

SafdW) £ Vi.Safe{i, W)

If a machine configuration is safe, it can run forever withgeihg stuck.
The following lemma states that the operational semanfiggygsical machine is
deterministic. In other words, any execution trace is linea

Lemma 1 (Deterministic physical machine)For any physical machine configuration
W, if there existsv’ andW” such thatW — W’ andW — W”, then the two machine
configurations arév’' =w".

Proof. By induction on the transition relation of physical machine o

Here we prove that the implementation of context switch isststent to the opera-
tion semantics oéswitch defined in Fig[B.

Lemma 2 (Mapping of context switch).If W= (C,Spc), W, W || W, and C(pc) =
cswitch, if W can run one step toVv/, thenW can also runn steps § > 0) to some
W’ such thatWy —" W andw’ || W',

Proof. By the operational semantics of the instructieritch and_the implementation
of context switch routine. m|

Lemma 3 (Mapping of One Step).For any abstract machine configuratiat and
physical machine configuratiow, if they satisfies the translation relatia |} W, and
for anyw’ such thatv — W’, then there must exists\’ thatw —* W’ andw’ | W',

11
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Proof. By induction on the operational semantics of the abstraching. |

By the translation, we can prove that if the abstraction rirecks safe, then its
counter-part of physical machine is also safe.

Theorem 1 (Safety Preservation)For any machine configuratiow andw, if w || W
andSaféw) thenSaféWw).

Proof. Induction on step, and by Lemrph 3. |

4 Proof system

In this section, we extend the assertion language of CSLdoigpthe thread resources,
and propose a small proof system supporting verify conaticede with modification
of TCBs at the assembly level.

4.1 Assertion language and code specification

We usep andq as assertion variables, which are predicates over mactatessThe
assertion constructs, adapted from separation logic gt8khallowly embeddeid the
meta language , as shown in Hig] 10. The notatioangf asserts an empty state, i.e.
all components are empty, where we use the notgtipto denote an empty mapping.
The assertion of separation conjunctipa q specifies the stats8 which can be split
into two disjoint parts, satisfying andq respectively. The separation implicatipa-+q
means that: if merged resources specifieghjipe state will satisfy. In our assertion
language, there are two special assertion constructs &traah threads. One of them
is (t) specifying resources of a ready thread and the othgf &pecifying resources
of current running thread. Since threads are explicit recsuin the abstract machine,
their machine context data (values in registers) are predescross context switch.
Hence the resources of registers shouldn't be shared. Wieilymnark a pure assertion
by #, which forbids an assertion specifying resources. An umentation ¢ p) mark
an assertiorp that only specifies shared resources but no thread localmes®€.9.,
registers). Registers are also treated as resources,-andspecifies a register with the
value ofw. The notatiorry,...,rn — w1,...,wn iS @ compact form for multiple registers.
We borrow the idea from SCAPRI[4] that(a,g) pair is used to specify instructions
at assembly-level. The pre-conditiprdescribes the state before the first instruction of
an instruction sequence, while the actwpdescribes the actions done by the whole in-
struction sequence. In the proof system, each instrucdiassociated with ¢, g) pair,
whereg describes the actions from this instruction teea instruction. For all instruc-
tions inC, all (p,g) pairs are put in a global mapping, from labels to specifications.

(Assert) p,q € State — Prop
(Action) g € State — State — Prop
(Spec) W = {f:(p.9)}"

The specification formip,g) is different from the traditional pre-condition and post-
condition, which are both assertions and related by auyiliariables. We can still use
a notation to specify instructions in the traditional style

12
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Fig. 10. Definition of assertion constructs
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p (V1,0,Vn)
{q} £ ((AS.3vy,...,vn. 3P . (p(Ve, .-, V) * p’) S).

wherep is the pre-condition of instructions,is the post-condition, and,, ..., v, are
auxiliary variables occurring in the precondition and tlesteondition. For example,
the action of an addition instructiadi a0, 2 can be specified as follows:

a0 — Vv V)
a0 — v+2

wherev is an auxiliary variable to relate the pre-condition andtgmmndition. Then the

g says that for any, if the state before the addition instruction satiséies- v, the state
after addition will satisfya0 — v+2. We define a binary operator for composing two
pairs into one.

(p.g)>(p,g) £ AS.pSA(VS.gSS—p' S),
ANS,S.pS— (38.9gSSAG S T))

If an instruction sequence satisfigsg) and the following instruction sequence satis-
fies (p',d), then the composed instruction sequence would satisty > (p',g'). The
weakening relation between two pairs is defined as below:

(p.g)=(P.g) £ VS.pS—» P SA(VS.gSS—~gS9)

The relationimplies that: the preconditipiis stronger thap’ and the actioy is weaker
thang. For example, two actions of additions can be bound into anksatisfy the
following weakening relation:

a0 — v v a0 — V o) a0 — v V)
> =
a0 — v+2 a0 — V+3 a0 — V+5

4.2 Invariant for shared resources

As mentioned previously, our proof system draws ideas ofevalmp transfer from
CSL. By defining invariants for shared resources, our prgstesn ensures safe opera-
tions of TCBs.

Different from original concurrent separation logic, ouaichine doesn’t support in-
deterministic concurrency. And since there is only onelsipgocessor in our machine
model and no mterrupt support either, all threads in thehmm:run cooperanvely.ﬁv-

automatically.

Unlike the invariant in concurrent separation logic, theamant of shared resources
defined in our proof system is parameterized by two thread IRsty). Briefly, the
invariant describes the shared resources before contéxhswith the direction from
the threads to ty. One of the benefits of parameters is that the invariant isatty
specific.
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Like the abstract invariant in CSL, the invariant (ts,ty) is abstract and can be
instantiated to concrete definitions so as to verify varipusgrams, if it satisfies a
requirement of beingrecise[18].

Precisely, the invariantts,ty) describes the shared resources when the context switch
invoked from the thread to the threadly, butexcluding the resources of the two threads
Since the control flow from one thread to anothatéserministidoy context switch, ev-
ery two threads may negotiate a particular invariant thdifferent from pairs of other
threads. We can define different assertions (of shared mess)uvhich depends on the
source and the destination thread related to context swituis is quite different from
concurrent code at user-level, where every switch dependsmknown scheduling al-
gorithm.

4.3 Inference rules

The judgements of instruction in our proof system are of tiWwing form: W, 1 -
{(p,9)} pc : c, whereWw, | are implementation-specific. The judgement states that an
instruction sequence, started withat the label ofpc and ended with aet, satisfies
specification p,g) under® andl. The inference rules are shown in Hig] 11.

The rule of €DHP) is for reasoning about the entire kernel code. The prenfise o
the rule says that each instructiorram C should satisfy its corresponding specification
inW, W(f).

Therules of ADD), (ADDI), (MOV), (MOVI), (Lw),and Ew) are for non-jump
machine instructions. The premises of them are similar é@ thperational semantics
and easy to understand. For example, in the ruleaafD(), the premise says that the
specification(p,g) implies the action of theadd instruction composed with the spec-
ification of the next instructiony(pc+1). The action ofadd instruction is that if the
destination registery contains the value of;, and the source registeg contains the
value ofw,, then after the instructiorng will contain the sum ofv; andw,, while rg
will keep unchanged.

Functions are reasoned with the rules @fa(L) and RET). The (CALL) rule
says that the specificatiqip,g) implies the action that is composed by (1) the action
of instructioncali, (2) the specification of thinctioninvokedW(£), (3) the action of
instructionret, and (4) the specification of the next instructi®pc+1). The RET)
rule says that the specificatigp,g) implies an empty action, which means the actions
of the current function should be fulfilled. Although, lik€&P, our proof system hasn’t
the frame rule explicitly, the proof system can still sugpocal reasoning.

The most important rule in our proof system is the rule of emhswitch, €sw).

It states that the precondition eéwitch should include the following resources:

— [t]: the current thread, whose thread-ID is stored in the rexgist
— (t'): aready thread, with 1D/, which is stored in the registet;
— ol(t,t'): a part of resources without any resource of registers.

To the same threadafter return from context switch, the thread will regaia ttontrol.
Thus, from a local point of view from one thread, the postdtonl of context switch
should include:
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— [t]: the current thread;

— registers0 andat are unchanged;

— (t"): there exists an unknown thregtwhich just called context switch before the
threadt re-obtains the control;

— ol(t”,t): a part of the shared resources, which implies the directfdghe last con-
text switch is from” tot.

4.4 Invariant of global resources and soundness

Each abstract thread corresponds to one part of global re=®tepresenting the con-
crete resources allocated for this thread. For examplen tabatract threadt), there
exist resources of its TCB, stack, and private resources:efbre, all resources can be
divided into parts and each of them is associated to onedhiide global invariant is
such a logical expression that describes the partition oésburces globally, defined in
Fig.[12. The invariant is the key for proving the soundnesstém of our proof system.

Continuation. First, for each thread, we define a predicadet to specify its resources
and control flow, i.e. theontinuationof this thread. The first parametenf this pred-
icate specifies the number of functions nested in the thseantitrol flow. Ifn is equal

to zero, it means that the thread is running in the topmositfon, which could be an
infinite loop and cannot return. If the numbreis greater than zero, the predicate says
that there is a specificatiamp,g) in W atpc, such that the resources of the thread satis-
fies p; andg guarantees that the thread will continue to satdyt recursively after it
returns to the addresstaddr.

Running thread.The concrete resources ofranning threadare specified by a con-
tinuationcont with an additional condition, the running thread owns afjiséers. The
parametepc points to the next instruction the thread is going to run.eHge use an
abbreviation R| to denote the resources of all registers, except that thewata is of
no interest.

[R| £ (ra + _) * (vO — R(v0)) * (sp — R(sp))
* (a0 — R(a0)) * (a1l — R(al)) * (a2 +— R(a2))

Ready thread For aready threador a runnable thread), its concrete resources are de-
fined by separation implication«: if given (1) the resources of saved machine context
[R], (2) the abstract resource of itsélf (3) another ready threatland (4) shared re-
sources specified byl (t',t), the resources of the ready thread can be transformed into
the resources of a running thread. It thread ID is specifiethbysecond parameter of
RThrd, and the third parameter is the machine context data savedli@B. Please note
that the program counter of a ready thread is saved into tistegra.
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VEedomC). W1k {W(f)}f:C(%)
WIrC

(rg — W1) x (rs — W2) (Wi w2) w )
PO\ (g s WLiw) * (zs 5 W) >W(petl)

(CDHP)

W,1'-{(p,g)} pc:add rg, rs (ADD)

(rg — wil) W)
(p.9) = (rq s Wl 1) >W(pc+1)

WIF{(p,0)} pc:addiry,w (ApD1)

(rg s W) * (zs s w2)) "2 y
(p,9) = (24 > W2) = (e o W2) >W(pc+1)
W1 +{(p,9)} pc:mov ry, rs

(p.g) = {(r" 7 ‘)}W(pcﬂ)

(rg = w)

(Mov)

W, I+ {p} pc :movi rg, w {g} (movr)

(rt — ) * (rs+w — wl)
(p.g)=

(wa)
Wipc+1
(r¢ > WL) % (rshw 1> Wl)} >Wlpet)

val F {(pvg }pC ‘lw It, W(IS)

(Lw)

(rt — W1) % (rstw — _)

(wd)
(|079):>{ )} >W(pc+1)

(zt — W1) % (Tstw — Wl

(sw)

)
(
(
W H{(p,9)} pc:swrt, w(rs)

<p,g>;»{rw‘ }»Mf)»{rwP°“}>w<pc+1>>

ral—>pc+1 ra— _
W,I-{(p,g)} pc: call £ (CALL)
P9 = {::p} (p,g) = W(£) )
(RET) W,I-{(p,9)} pc: jmp £

W +{(p,9)} pc:ret
(PA(re = 0),9) = W(£)  (PA(rt — w) x §(w#0),9) = W(pc+1)
WIk{(p,g)}pc:bzr, £

(B2)

[t] * (20,a1,ra — t,t/, ) x {t') x ol (t,t)
[t] * (20,a1,ra s t,t/,_) « It (") x ol
W,I+{(p,9)} pc:cswitch

(tt)
(p.9) = { m,g} > W(pe-+1)

(csw)

Fig. 11.Inference rules selected)
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Cont(n41,W,pc) £ AS.W(pc)=(p,g
A(VS.gSS—

=

A(PS
Jretaddr. (ra — £) A Cont(n, W, retaddr)) S)

Cont(0,W,pc) 2 AS.W(pc)=(p,g) A (PS A (VS.gS $— False)

CThrd(W,t,pc) 2 Jn.Cont(n,W,pc) A ([t] * IR.|[R] * true)

RThrd(W,t,R) £ |R| * [t] 3. (t') * ol (t',t) —CThrd(W,t,R(ra))

GINV(W,Ppc) £ CThrd(W,t,pc) * RThrd(W,tg, Rg) * --- * RThrd(W, tn, Rn)
whereP={t : run, to: (rdy,Rp), ..., tnh:(rdy,Rn)}

_ =

Fig. 12.Concrete threads and the global invariant
a logical partition

Invariant of global resourcesThe whole machine state can be partitioned , and each
of parts is owned by one thread, which is either running odye@hus, the global
invariantGINV is defined in the form of separation conjunction Gyhrd and RThrd.
The structure ofzINV is isomorphic to the thread po8t one abstract running thread
is mapped to resources specified by amerd; one abstract ready thread is mapped to
resources specified by omahrd. Note thatGINV requires that there be one and only
one running abstract thread, since the physical machinerigone single processor.
Our proof system ensures that the machine state alway$iesatise global invariant,
(GINV(W,P,pc) (M,R P)).

4.5 Soundness

The soundness property of our proof system states that agyagm that is well-formed

in our proof system will run safely on the abstract machirtee property can be proved
by the global invarianGINnv, which always holds through machine execution. We can
first prove that if every machine configuration satisf@syv, it can run forward for
one step. And we can also prove that if a machine configurésatisfyingGinv) can
proceed, the next machine configuration will also satsfyv. Hence by the invari-
antGINv, the soundness theorem of our proof system can be provedrdbéof the
soundness theorem has been formalized in Coq [8].

Lemma 4 (Context switch over shared invariant).For any machine configuration
(C,(M,R,P),pc), and kernel specificatioW, W, 1,1 - C, state satisfies the global invariant

(M,RP) IF |R] = [t] = {t') = 1(t,t') x p

cswitch

then after machine run a context swit@ll, R P) ~— " (M’,R,P’), the machine state
will satisfy

(M R,P) IF R *[t]=1(t) *p,
whereR(a0)=t andR(a1)=t'.
Proof. Immediate. a
Lemma 5 (Context switch over global invariant). For any machine configuration

(C,(M,R,P),pc), and kernel specificatioW, W, 1,1 - C, state satisfies the global invariant
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(M,R,P) I GINV(W,P,pc),

cswitch

if machine can run a context switch commafd,R P) ~< (M’,R,P) then the state
after the command still satisfies the global invariant:

(M",R,P') IF GINV(W,P' pc).
Proof. Immediate. O

Theorem 2 (Progress)For any machine configuratioi€, S pc), if W, 1,1 -Cand(C,S pc) I-
GINV(W,P,pc), then the machine can go forward for one stép:S pc) — (C,S,pc’),
whereS=(M,R P).

Proof. O

Theorem 3 (Preservation).For any machine configuratiofC, S pc), whose code is
verifiedW, 1,1 - C and state satisfies the global invariaiat S pc) IF GINV(W,P,pc), if it
steps tqC,Spc) — (C,S,pc’), then the the new state also satisfies the global invariant:
(C,Spc’) IF GINV(W, P pc’), whereS=(M,R,P) andS = (MR ,P).

Proof. O

Theorem 4 (Soundness)For any machine configuratioriG, (M, R, P),pc), if its code
is verified,W,| - C, and its state satisfies the global invariaf, R P) I~ GINV(W,P,pc),
then it is safe to run.

Proof. By Lemmd2 and Lemnid 3.

5 \Verification cases

In this section, we show how to use the proof system to venifyschedulers of pattern
(1) and (111) shown in Fig[d.. The examples are small and daip help readers under-
stand our framework easily. Still, they can be extended atistic ones if we improve

our verification framework on a more realistic machine moaladl enrich inference
rules as well.

5.1 Scheduler as function

We explain the code in C style here, but verify it at assentdgl. This pattern of
scheduling is modeled from code scheduler of many real@fckernels (FreeBSD,
Linux, RTEMSetc). Since we only implement thread scheduling, we define thue-st
ture of TCBs as simple as possible. It only contains machimgéext and two pointers
for organizing the thread queue. Please note that threadi®the memory addresses
of TCBs.

The scheduler function follows the process discussed iniZdhe functiongeq()
andenq() are used to remove and insert nodes in thread queues. Theaskiof the
scheduler is choosing a candidate from the thread queueaang cbntext switch from
the current thread to the candidate. There are two glob#&hlaes,cur andrq. The
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variablecur points the TCB of the running thread; while the variabdepoints to the
thread queue containing TCBs of all other threads. Suppasgule p2() is invoked
by one thread,, it firstly records the value of variabtar to a local variable1d before
modifying cur. Then it picks anewthread control block from the ready thread queue
by calling functiondeq (). If the queue is empty, this function will return immedigtel
Otherwise, it puts the TCB of the running thread into thedlrqueue by callingnq O,
and modifiesur to thenewthread (g). Next, the function does context switch from the
current running threadh to the new threads. From then on, the threag becomes
ready and then waits for the next cycle, aptbecomes a running thread. After a while,
if another thread¢) happens to choose the thragds thenextthread to context switch,
the thread, will re-obtain the control frontc. Finally, the function returns back to the
caller. It's possible that an invocation of context switoh, won't return ifts is never
chosen.

struct tcb { void schedule_p2()

struct context ctxt; {
struct tcb *prev; struct tcb *old, *new;
struct tcb *next; old = cur;

|

|

|

|

}; | new = deq(&rq);

| if (new == NULL) return;
| enq(&rq, old);

| cur = new;

| cswitch(old,new);
| return;

|

struct tcb *rq;
struct tcb *cur;

}

We define the following notations to specify the structur@ GB:
t "% p 2 {40FF_PREV — p

t "' q £ t+0FF_NEXT — q

(Rt S T

[I>

ptch(t)

The notatiort ™' p andt % q specify the memory cell of two pointers of the TCB.

The notatiorptcb(t) specifies a part of TCB including the fields ©fxt andprev. We
use the predicateQ(q) to describe a double linked list as a thread queue pointed by
Please note that the resources specifie&dy include the ready thread resourdes
inside. Thus we can know that every node in the thread queexaistly a TCB of a
readythread.

RQseg(t/,t) 2 (t) + (t P t/) » It (t "=X't”) « RQseg(t, ")

RQseg(t’,t) £ #(t=NULL)
RQ(rq) £ Jt.(rq ~ t) * RQseg(NULL, 1)

The specification ofchedule_p2() is shown below:
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[t] * pteb(t) * (cur s t) * RQ(xq) * (ra s ret)  K(bp,20) * (v0,a0,a1 s _)) ""eP)
[t] * ptcb(t) * (cur — t) * RQ(rq)  (ra > ret) x K(bp,20) * (v0,a0,al — _)
The precondition states the following resources:

— [t]: the current thread resource with threadt|D

— pteb(t): the two pointers in TCB of current thregad

— (cur — t): the global variableur pointing to current thread,;

— RQ(zq): a ready thread which includes ready thread resources;

— (ra — ret): the registet-a containing the return address;

— K(bp,20): the stack registesp and a block of memory as an unused stack, with base
address obp and the size 020,

— (v0,a0,a1,a2 — _): all of other registers used for the function.

The postcondition of the schedule function is same with tteeg@ndition. Here we
use a notatiom(bp,n,w:: w :: ---) to describe a stack frame. The first paraméteis
the base address of a stack frame. The second paramistthe size of unused space
(number of words). Please remember that all stacks grow dawds in our machine
model. And the third parameter is a list of words, represgritie values on stack top
down, that is, the leftmost value in the list is the topmo$tigadn the stack frame. If the
stack frame is empty, we omit the third parameter. The dafmitf K is given below:

K(bp,n,wg 1wy ii... 2 wm) 2 Asp.(sp — sp) * 4(sp=bp+4n)
s (bp = (W) % (sp— wg) * (SP+4 — wy) * --- * (SP+4M — wm)
K(bp7 n) £ K(bp n?')
Note that the stack registeg is included in thex(- - ).

The two auxiliary functionsdnq () anddeq()) are used in the schedule function for
manipulating thread queues. Their specifications are defirtow:

RQ(Q) * pteb(t)  (a0,al,a2,v0,ra s q,t,w,_, ret) * K(bp, 10) (@twret
({t) —«xRQ(Q)) * (a0,al1,a2,v0 — q,t,w,ret) « (vO — 0) * K(bp, 10)

RQ() * (a0,al,a2,ra — q,wl,w2,ret) x K(bp, 10)  (vO s _)Y (GWLW2rey

RQ(Q) * (a0,al1,a2,ra — q,wl,w2,ret) x K(bp, 10)
«((At.(vO > 1) * (t) = ptch(t)) W (vO > 0))
The abstract invariantis instantiated to a concrete definition specifying the stlar
resourcebeforeandafter context switch for this implementation of scheduler.
[(t,t') £ ptcb(t’) * (cur — t') * ((t) —xRQ(rq))
The invariant (t,t) is to specify shared resourcesgcludingresources of andt’, but
including the following resources:

— ptch(t'): the two pointersgrev) and qext) of TCB of the new thread;

— cur + t': the global variableur, pointing tot’;

— ({t) —xRQ(rq): the thread queue, being excluded the resourcé)pbecause the
current thread is still not a ready thread before contextcwi
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schedule_p2:

{[t] * ptcb(t) * (cur — t) * RQ(rq) * (a0,a1,v0,ra — _,_,_,ret) x K(bp,20)}
subi sp, 12
sw ra, 8(sp)
movi ao, cur
1w v0, 0(a0)
sw v0, 0(sp)

{[t] * ptcb(t) * (cur — t) x RQ(xq) * K(bp,17,t :: _ :: ret)
x(a0,a1,v0,ra — cur,_,t,_)}

movi a0, rq
call deq
bz vO, Ls_ret

{[t] * pteb(t) * (t') x pteb(t’) * RQ(xq) * K(bp,17,t :: _ :: ret) x (cur > t)
% (a0,a1,v0,ra — rq,_,t’, )}

sw v0, 4(sp)
1w al, 0(sp)
call enq

{[t] * {t') * pteb(t’) * ({t) —«RQ(xq)) * K(bp, 17,t ::t’ :: ret) x (cur — t)
x(a0,a1,v0,ra — rq,t,0,_)}

1w al, 4(sp)
movi ao, cur

sW al, 0(a0)
1w a0, 0(sp)

{[t] * {t') * ((t) —xRQ(xq)) * ptch(t’) x K(bp, 17,t ::t’ :: ret) x (cur — t’)
% (a0,a1,v0,ra s t,t’,0, )}
cswitch
{[t] * pteb(t) «It”. ") * ({t") —*RQ(xrq)) * K(bp,17,t :: _ ::ret) x (cur — t)
x(a0,a1,v0,ra — t,t’,_, )}

Ls_ret:
1w ra, 8(sp)
addi sp, 12
{[t] * ptcb(t) % (cur — t) x RQ(xq) * (a0,al,v0,ra — _,_,_,ret) x K(bp,20)}
ret

Fig. 13. Verification of schedule_p2 ()
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5.2 Scheduler as a separated thread

A scheduler in the pattern (Ill) does scheduling jobs in dipalar thread. This thread
is sometimes called processor-layer thréad [19], whichnmehat there will be one
processor-layer thread for each processor in a multi-aotétacture. The advantage of
adding this scheduler thread is that this special threackaaity clean up dead threads
who cannot deallocate its own stack since it can not call atfan on a stack that is
has been released [19], or implement multiple schedulepsiénsystem[5]. A global
variablesched is added to represent the TCB of the separate thread. In dltisrp of
scheduler, separate thread do the scheduling job in a mfmifp. A stub function is
neededchedule_p3() for being invoked by other threads.

struct tcb sched; chedth()

s
struct tcb *cur, *rq; {

while(1){
cur = deq(&rq);

cswitch(&sched, cur);

schedule_p3()

{
cswitch(cur,&sched);
return;

}

enq(&rq, cur);

I
|
|
I
|
|
I3
|

}

We define the specification ethedule_p3() function below:

[t] % pteb(t) * (cur + t) * (sched) * (a0,al,ra rs _,_,ret) x K(bp,10) ) (PP
[t] * ptcb(t) * (cur + t) * (sched) * (a0,al,ra — _,_,ret) x K(bp, 10)

Both the precondition and the postcondition of the schefluietion schedule_p3()

state the following resources:

— [t]: the current thread with thread ID

— ptch(t): the two pointers of TCB of current thread

— (cur — t): the global variableur is pointing to current thread;

— (ra — ret): the register containing the return address;

— K(bp, 10): stack register and a block of memory as a empty stack, witk bddress
of bp and size ofl0;

— (a0,a1 — _): two registers;

— (sched): the thread resources of the separate thread for scheduling

Differing from the specification ochedule_p2(), the schedule function in this imple-
mentation doesn’t own the thread queue. However, sincegamtons over the thread
gueue are put into a separated thread, the ownership ofréetijueue is owned by the
scheduler threatkched) only. The specification afchedth () function is shown below:

{ [sched] * (cur — _) * RQ(xq) * (a0,al,a2,v0,ra — _,_,_,_,_) * K(b[:),lO)}<bp>

false

The precondition of the functiogchedth running in the separate thread states the fol-
lowing resources:
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schedth:

{[sched] * (cur — _) * RQ(xq) * K(bp,10) * (a0,al,v0,ra — _,_,_,_)}
movi a0, rq
call deq
bz vO, schedth

{[sched] * (cur ~ _) * (t') * ptcb(t’) * RQ(xq) * K(bp, 10)
% (a0,a1,v0,ra s rq,_,t’, )}

movi a2, cur
sW vO0, 0(a2)
mov al, v0

1w ao, sched

{[sched] * (t') * (cur — t) * pteb(t’) * K(bp,10)
*RQ(rq) * (a0,a1,v0,ra > sched,t’,_, )}

cswitch
{[sched] x3t” . (t") * ptcb(t”) * (cur — t") * K(bp,10)
*RQ(rq) * (a0,al,v0,ra — sched,_,_,_)}
movi a0, rq
1w al, 0(a2)

{[sched] «It” . (t") * ptcb(t”) * (cur — t”) x RQ(xrq) * K(bp,10)
*(a0 — rq) * (al — t') x (vO,ra — _)}

call enq

{[sched] * (cur — _) * RQ(xq) * K(bp, 10)
#(v0 — 0) * (a0 = rq) * (al — t') * (ra — _)}
jmp schedth

schedule p3:
{[t] * ptcb(t) * (sched) * (cur — t) x K(bp,10) % (a0,al,ra — _,_,ret)}

subi sp, 4

sw ra, O0(sp)
movi al, cur
1w a0, 0(al)
movi al, sched

{[t] * ptcb(t) * (sched) * (cur — t) x K(bp,9,ret) x (a0,al,ra > t,sched,ret)}

cswitch

{[t] * ptcb(t) * (sched) * (cur + t) * K(bp,9,ret) * (a0,al,ra — _,_,ret)}
1w ra, 0(sp)
addi sp, 4

{[t] * ptcb(t) * (sched) * (cur > t) * K(bp,10) * (a0,al,ra — _,_,ret)}
ret

Fig. 14. Verification of schedule_p3()
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— [sched]: the current thread with thread I

— (cur — _): the global variableur pointing to current thread,;

— (ra — ret): the register containing the return address;

— K(bp, 10): the stack registesp and a block of memory as empty stack frame, with
base address op and the size 020;

— (v0,a0,a1,a2,ra — _): Other registers;

In this version, since the ready thread queue is only opegfatéhe scheduler thread, it
needn’t to be shared by other threads. We define the invaranshown below:

[(t,t') £ (4(t'=sched) * (cur + t) * ptcb(t)) W (£(t =sched) * (cur — t') * pteb(t’))

The definition ofi(t,t’) is defined as cases analysis on the direction of contextlswitc
if the destination thread is the scheduler thre&dt’) requires that the value icur be
equal to the ID of the source threadpr if the source thread is the scheduler thread,
[(t,t) requires that the value itur be equal to the ID of the destination thread.

6 Extension 1: interrupt and preemptive scheduling

In this section, we extend our proof system with interrupgsart so as to verify the
implementation of preemptive scheduling, which was ablbdoverified by previous
methods([$.I7,20]. Comparing with them, however, our veatfan is simpler and easier
to follow.

We first give a piece of code which implements the schedulattem (1) as pre-
sented in Figurgl1.

struct tcb {
struct context ctxt;
int pcC;
struct tcb *prev;
struct tcb *next;

};

void intr_handler()

{

struct tcb *cur;
struct tcb *rq;

int istack[IKSIZE];
void f()

{

|

|

| struct tcb *new;

| savectxt (cur);

| new = deq(rq);
struct tcb *t; | if (new '= NULL) {

|

|

|

|

|

cliQ; enq(rq, cur);
t = cur; cur = new;
stiQ); }

return; loadctxt (cur);

} }

In code above, there are two global variables; andrq, pointing to the TCB of cur-
rent thread and the ready thread queue. If an interrupt kigiéggered by the timer,

the processor will jump to run the_interrupt service routff#R), Here the function

intr_handler (), which does the job of scheduling, is setup to serve as an T&R.
differences between this function with schedulers verifietthe last section are that:
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(AbsMach) W = (C,Spc)

(State) S = (H,RF,P)

(Flag) F = {if:w}

(Pool) P o= {t:T}*

(TID) t = w]|isr

(Thrd) T = run| (rdy,R,pc) | (intr,t)
(Absinstr) ¢ = iliret|sti]cli

Fig. 15.Extension 1: abstract machine

— the context of the current thread is saved right after iofgroccurs;

— the context of the next thread is not loaded until the prameissgoing to return
from the ISR;

— the operations of the thread queue are manipulated insidé&SHR.

Abstract machine.To support interrupt, we extend the machine model in Figiie 1

The state of machine is added with a flag registerhich is a singleton mapping from
the insterrupt flagif to a word, which could beo(or 1). The flag register indicates
whether the interrupt is disablegfor disabled interrupt). We add a new type of abstract

thread to the thread poadhtr, which specifies the processor is running in the ISR. We
give a special thread IBr to intr. Some new instructions are introduced for interrupt
support. The abstract instructiaget is used for returning from interrupt handler. The
instructionssti andc1i are for turning-on or turning-off interrupt by modifyingeh
flag register.

Operational semanticsThe extended operational semantics are shown in Figlire 16.

Interrupts may occur when the flag register is equal,totherwise the interrupt
is disabled. If an interrupt occurrs, the program countdirlvei saved in TCB pointed
by a2, since processor will re-execute the instruction pointggdafter return from
ISR. At the same time, the flag register is modified to zero &w@nmt the reentrance of
interrupts. The tag of the current thread is changed frnamo rdy with saved register
file and the program counter. Moreover, an abstract threésladded to the thread pool
to indicate that the processor is running in the ISR.

If the ISR returns by the instructiairet, a new abstract threadvill be pointed by
a2, the register file and the program counter will be loaded fia®B, the flag register
will be turned on, and the tag of the new thread will be charfgeah rdy to run. And
the abstract threadr will be dismissed.

The binary relatiorww — W’ specifies the one-step operational semantics of the
machine. The relatiof§ pc) gay (S pC ") specifies the state transition when an interrupt
occurrs; while the relatiofs pc) <> (S pc’) specifies the state transition when the pro-
cessor returns from the ISR. Note that these operationadistrs are a little different
from ones of realistic hardware. In fact, the abstract apmra include both operations
done by hardware and operations done by some built-in coebdé€ts may see the part
of machine translation in this section for more information
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Clpe)=c  (Spc) <> (S,pc)  SF(if)=1 (Spc) 5 (S.pc)
(C,Spc) — (C,S,pc’) (C,Spc) — (C,S,pc’)

‘ intr ‘

((M,RF,P),pc) — ((M,R,F',P"),pc’)
M=M AR=RAt=R(a2) Apc’=1"" A F(if)=1 A F/(if)=0
AP ={t:run}yP”
AP ={t: (rdy,R pc)} W isr:intr} wP"

((M,RF,P),pc) <> (M',R,F,P),pc’)
if c = | then

i ((M,R),pc) < (M",R),pc/) AP=P' AF=F

iret |[M=M At=R(a2) A pc’=pc; AF(if)=0AF/(if)=1
AP ={t: (rdy,R,pc;) }w{isr :intr} wP”

AP ={t:run}wP”

sti M=M'AR=R AF(if)=0 AF/(if)=1 A P=F

cli M=M AR=R AF(if)=1 AF/(if)=0 AP=F

Fig. 16.Extension 1: operational semantics

Assertion languageSome new assertion constructs are needed. One of these is for
specifying the abstract thread of ISR]]. Its definition is straightforward and shown
below. The notationif +— b specifies the flag register, and — b specifies the flag
register and other uninteresting resources. We changeefivétibn of o p here, which
states that a shared assertipdoesn’t specify any resource of general register or flag
register.

[ = AM,RF,P).P={isr:intr} AM=F=R={-}
if b 2 AM,RF,P).F={if :b} AM=R=P={}
if = b £ A(M,RF,P).F={if:Db}

op 2 MM,RF,P).p(M,RF,P)AR=F={}

6.1 Inference rules

We extend our proof system with the following four rules fawninstruction in Fig-
ure[17. The invariant of context switdkt) is different from the invariani(t,t’) in Sec-
tion[4. It has only one parameteindicating which thread the current ISR is going to
switch to.

The rule of (NTR) states that if interrupt is enabled before processor ru@snt-
structioni, the thread should contain the following resources:

— []: the resource of the current thread,
— (a2 — t): the value of registesfo is equal ta,
— (if — 1): the flag register with interrupt enabled.
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[t] * (if s 0) % 03(t)) Y
(h.o)= { O ) } >W(pe-+1)

W JI+{(p,9)} pc:sti (sT)
[t] + (1 > 1) © v
(P.9)= [t] % (if — 0) * 0J(t) >W(pett)
(cL)

W,IF{(p,9)} pc:cli

(] % (a2 5 £) # (£) * (if — 0) x0J(t)) ¥
(p,g) =

W, I+ {(p,9)} pc:iret (IRET)

) [t] * (a2 —= t) * (if — 1) ®
(PAGE= D929 1 w2 s gz 1) ~PY

W IFin{(p,9)} pc:c

(INTR)

WA = (p,@lisr VEedomC). W,k n{W(E)IE:C(E)  WIF {¥(£)} pe: i

WJrc (CoHP)
(1] * K(istack, ihksize * ({t) (a2 s t) = 0J(t)) ¥
where(p, g)isr = *(v0,a0,al,a2,ra — _,_,_,_,_)
L

Fig. 17.Extended inference rules of Ext. |
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After interrupt, the current instruction should be verifaghin under the current speci-
fication.

The rule of (RET) states if the ISR want to load the context of a new thread, it
should have the following resources:

— [[]]: the current ISR resource,

— (t): the resource of a new ready thread,

— (a2 +— t): the value of registes2 pointing tot,

— (if — 0): the flag register with interrupt enabled,
— ¢J(t): shared resources.

The rules of 671) and (LI) cause ownership tranfer of the shared resources spec-
ified by oJ(t), wheret is exactly the ID of current running thread.

The rule of €CDHP) is changed as well. Each instructiondrshould be checked
by the rule (NTR). Moreover, the specification of the ISRy, g)isr is hardwired at the
label1i"". The specification of ISR specifies the precondition, whichusd have the
following resources:

— [[]]: the current ISR resource,

— (t): the resource of the interrupted thread,

— (a2 +— t): the value of registes2 pointing tot,

— (if — 0): the flag register with interrupt disabled,
— K(istack,ihksize: the special stack for ISR,

— ¢J(t): shared resources.

6.2 Invariant of global resources

Running thread.The concrete resources of a running thread are specified by-a c
tinuationcont with an additional condition, the running thread owns afjiséers. The
parametepc points to the next instruction the thread is going to run.

CThrd(W,t,pc) = Fn.Cont(n,W,pc) A ([t] * IR.|R| * true)
Ready thread Because the interrupt must be enabled before the procesgiairtme in-

terrupted, any ready thread won't have the shared resowteas running. Accordingly,
we modify the definition oRThrd as below:

RThrd(W,t,Ri,pc;) = |Ri] * (if + 1) * [t] —«CThrd(W,t,pc;)
The definition ofcThrd is same to the definition in Sectibn #.5.
Interrupt service routine.When a thread is interrupted, the ISR will use a reserved
block of stack space (with size ibksizg. Thus we define the resources of ISR as below:
IThrd(W,pc) £ Jn.Cont(n,W,pc) A ([[-]] * IR. |R| * kspace(istack,ihksize x true)

The global invariantINV is defined according to the resource layout. Its form of the
definition depends the condition whether the processonising in the ISR, or a thread.
Note that the shared resources will be get out of the runtiirgpd if the interrupt is
enabled, otherwise it will bring data racing for a simples@athat the shared resources
are accessed from both threads and the [SRv:
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GINV(W,P,pc) £ CThrd(W,t,pc) * kspace(istack,ihksizg * RThrd(W,tg, Ry, pcq)
* -+ % RThrd(W,tn, Rn, pcy)
*((1f — 1) = (1f — 1) = 1(t)) A((if — 0) —(if + 0))
if P={t:run,to: (rdy,Ro,pcg),...,tn : (rdy,Rn,pcpy) }
GINV(W,P,pc) = IThrd(W,pc) * RThrd(W, to, Ry, pcg) * - -+ * RThrd(W,tn, Ry, pep)
if P={isr:intr,tg: (rdy,Ro,pcg), - -.,tn : (rdy, Rn,pcy)}

SoundnessThe soundess theorem of proof system can be proved by patiserof
the global invariant:

Theorem 5 (Soundness of Ext.l)For any machine configuratiofC, S pc), if its code
is verifiedw,J - C and its state satisfies the global invarigit GINV(W, P,pc), then itis
safe to run Safd(C, S pc)).

Machine translation.To make the verification result based on the physical macttiee
new abstract commands should be able to be translated tostermode. In many real-
istic machine, there often are special instruction to turfoff interrupt, so it's easy to
translatesti andcli to those intructions. But farntr andiret, since the two abstract
instructions are responsible for saving and loading cdmtata, each of them should be
translated to a sequence of instructions, from the lahglsy_1SR andioadctx:

entry_ISR: | loadctx:
sw ra, 0(a0) | lw sp, 20(a0)
sw v0, 4(a0) | 1w a2, 16(a0)
sw a0, 8(a0) | 1w a1, 12(a0)
sw al, 12(a0) | 1w a0, 8(a0)
sw a2, 16(a0) | 1w v0, 4(a0)
sw sp, 20(a0) | 1w ra, 0(a0)
|

sw kO, 24(a0) 1w kO, 24(a0)
movi sp, istack | iret

The operations done by hardware when an interrupt occugrsteg program counter is
saved to the stack of interrupted thread, the processorguoyatry_1SR. And then a
sequence of built-in code saves the registers into TCB, hadge the stack pointer to a
special stack. When returns from the ISR, the processotaaitl the registers of a new
thread, and then run thget instruction to jump to the code whose label was saved on
the stack before.

6.3 Verification
We modify the definition of the two invariants of shared reses and give them below:

J(t) £ pteb(t) * (cur — t) * RQ(rq)

Then we can verify a small interrupt handler by the inferendes presented. The
assembly code and selected assertions are shown in Eigure 18
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intr_handler:
{[[']] * (if — 0) =* ptcb(t) * (t) * (cur — t) *x RQ(rq) * K(istack,ihksizg
*(a0 — t) * (v0,al,a2,ra — _)}
movi al, a0
movi a0, rq
{[[[]] * (1f — 0) x ptcb(t) * (t) * (cur — t) x RQ(xq) * K(istack,ihksize
*(a0 — rq) * (al +— t) x (v0,a2,ra > _)}
call deq
bz vO, ihret
{[[[]] * (1f — 0) x ptcb(t) * (t) * (cur — t) x RQ(xq) * K(istack,ihksize
*(v0 > t') % (t’) * pteb(t’) * (20 > rq) * (al > t) x (a2,ra — _)}
movi a2, cur
sw vO, 0(a2)
{[[']] * (if — 0) x ptcb(t) * (t) * (cur — t') * RQ(rq) * K(istack,ihksizg
*(v0 = t') % (t’) * pteb(t’) * (20 — rq) * (al — t) x (a2,ra — _)}
call enq
{[[']] * (if = 0) * (cur — t') * ({t) —*RQ(rq)) * K(istack,ihksize
#(t') % pteb(t') * (a0 — rq) * (al — t) * (v0,a2,ra — _)}
movi a2, cur
1w a0, 0(a2)
{[[']] * (if = 0) * (cur — t') * ({t) —*RQ(rq)) * K(istack,ihksize
*(t') x pteb(t') * (a0 — t') * (v0,al,a2,ra s _)}
ihret:
{[[']] * (if — 0) = K(istackihksizg * (v0,al,a2,ra > _)
+JIt'. (a0 > t') * pteb(t’) x (cur — t') * RQ(xq))}

iret

Fig. 18. Verification ofintr_handler ()
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Disscussion.While in some realistic system, context data and the prog@unter of
processor are usually pushed into stack. This patternfexdift from ours. But it is easy
to modify the machine to support it. In the kernel of Minix [#s scheduling pattern
has another slight difference from the pattern verified is $ection. Minix uses a fixed
kernel stack. When a user process is trapped into the kéneedernel will switch to the
kernel stack thereafter and do the kernel jobs. Our framleisa@lso easy to be adpated
to this pattern by modifying the definition ofhrd: which will be the composition of
CThrd andrThrd without stack borrowing.
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7 Extension 2: dynamic thread (de)allocation

In this section, we extend our verification framework withetld dynamic creation
and deallocation support to verify a mini thread manageh e following thread
operations : thread create, thread exit. See our techrepalrt for other operations:
thread yield, thread kill and thread join.

The implementation of mini thread manager is given in Figi8le To support dy-
namic thread allocation, the stack location should be dtarehe TCB. To support
thread joining, a fieldoiner is added so as to identify another thread which is waiting
for this thead. Thus, this thread can be notified if thread@iisiinated. Please note that
any thread can be waited by only one thread. In this mini threanager, we adopt the
scheduling patterfll ), and add a separate threatled for do scheduling. Besides the
global pointersur andrq, we add one more thread queue for collecting dead threads,
pointed bydq.

We need three auxiliary functions for adding or removingesfiitom thread queues
and two functions about allocating/deallocating fixecedithread stacks. The function
create() is for thread creation. It initializes a TCB and puts it inteetready thread
queue. Sometimes, the scheduler may choose this new tloreaal. fThe entry point of
thread is put into the context data in TCB.

The functionschedth() does scheduling job in a separate thread. There a slight
difference between this function with the version in Set@ that the scheduler only
gets a new thread out of the ready thread queue, and doesttigpid thread back into
the ready thread.

When a thread has finished its task, it can egil () to terminate itself. Thexit ()
function will firstly check whether there is a thread waitfiogit. If so, the function puts
this thread into the ready thread queue and cleangthier field in the TCB of current
thread. Therexit () function will put current thread into the dead thread quéosd
the context of the scheduler thread and hand over the carftppbcessor.

The functionjoin() implements the synchronization of threads. When invoked, i
firstly checks whether the waited thread has been dead. thsofunction will free
the stack of the dead thread, get the TCB of waited thread etnd. Otherwise, the
function checks whether the waited thread is in the readgatthr If that, modify the
joiner field (of the waited thread) to the ID of current running thide®therwise, it
does context switch to the scheduler thread and loops whamaag back.

The functionkill() can terminate any thread in the system no matter what it is.
When invoked, it checks whether the victim has been deaddréf not, the function
gets the victim thread out of the ready thread queue, andipint® the dead thread
queue. And the function checks whether some thread is wdiinthe victim thread, if
so, the killer thread put the waiter thread into the readgdbrqueue.

7.1 Abstract machine

To support thread dynamic allocation and deallocation, egagate the stack spake
from the shared heap in the machine stat® The space of stacks is for all threads, but
cannot be shared between threads. The stack spisca mapping from labels to words
like heapH. To specify a dead thread, we add a new type of abstract thidssd k). In
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struct tcb {
struct context ctxt;
int *stack;
struct tcb *prev, *next;
struct tcb *joiner;

¥

struct tcb sched;
struct tcb *cur, *rq, *dq;

void exit()
{
struct tcb *old;
if (cur->joiner!=NULL) {
enq(rq, cur->joiner);
cur-> joiner = NULL;
}
enq(dq, cur);
loadctx(&sched) ;

}

void yield()

{
enq(rqg,cur);
cswitch(cur, &sched);
return;

}

int *kalloc();

void kfree(int *p);

bool ing(struct tcb *q, *p);
void rmq(struct tcb *q, *p);
struct tcb *deq(struct tcb *q);
void enq(struct tcb *q, *p);
int kill(struct tcb *t)

{

if (inq(dq, t) == 0)
return 0;
if (inq(rq, t) == -1)

return -1;
rmq(rqg, t);
if (t->joiner != NULL)
enq(rq,t->joiner);
t->joiner = NULL;
enq(dq,t);
return 0O;

void create(struct tcb *new, void (*f)())
{

int *ss; ss = kalloc();

new->stack = ss;

new->ctxt.ra = (int)f;

new->ctxt.sp = (int)(ss + KMAXSIZE);

new->joiner = NULL;

enq(rq,new) ;

return;

void schedth()
{
while(1){
cur = dequeue(rq);
if (cur == NULL)
continue;
cswitch(&sched, cur);

}
}

int join(struct tcb *t)

{

while(rmq(dq, t) == -1)
if (inq(rq, t) == -1)
return -1;

if (t->joiner != NULL)
return -1;
t->joiner = cur;
cswitch(cur, &sched);
}
kfree(t->stack) ;
return O;

}

Fig. 19.Ext. 2: The C code of a mini thread manager
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(Mach) W = (C,Spc)

(State) S = (H,K,RP)

(Heap) H = {1:w}*

(Stack) K = {l:w}*

(Thrd) T = run| (rdy,R) | dead

(Absintr) ¢ = cswitch|tnewr|tdelr|quit|i

Fig. 20. Abstract machine

any abstract thread, there is an additional value natedecord the start address of
the stack. And we introduce three new abstract instructiars to make a new thread
resource from heapiel to recycle a dead thread resource back to heapgandto
terminate current running thread and load the context offeamdhread. The extended
abstract machine is shown in Figliré 20.

Operational semanticsThe extended operational semantics are presented in Edure
The state transition of the commanehitch is exchanging the tags of two thread
entities: changing the running thread to ready and charairgdy thread to running.
The two thread entities are referenced by the registerandai. The commanduit
also exchanges the tags of two thread entities: changingutiv@ing thread to dead
and changing a ready thread to running. The ready threaddsheueferenced by the
registera0. The instructiortnew r turns a heap blockick1,R) into a ready thread entity,
with ID stored in the register. And the instructiortdel r turns a dead abstract thread
back into the heap.

7.2 Assertion language

We add an assertion construct to represent the resource eddattiread(t). Since
we separate heap from stack space, welusew to specify a cell in stack space and
usel — w to specify a cell in heap. A shared assertion doesn't comtaynresource of
register and stack. We change the meaningmfo that: a shared assertigndoesn’t
specify any resource of registers or resource on stack.

{th 2 ANH,K,RP).P={t:(dead )} AH={} AK={} AR={}
1ww = ANHKRP).K={1:u} Al #ANULLAH={} AR={}AP={}
HK.RP).H={1:w} Al#NULLAK={-} AR={-} AP={}
H,K,RP).p(H,K,R,P) AR={-} AK={}

—_~ o~~~

A
l—w2=A
op &

The definition of the notatiokspace(bp,n) need to be changed for specfying unused
stack space, andbp,n,---) specifying the shape of a stack frame:
kspace(bp,n) £ (bp ~~ _) * (bp+4 ~ _) % --- x (bp+a(n—1) ~ _)
hspace(l,n) = (I _) % (I4+4 = _) % - % (I+4(n—1) = )
K(bp,n,wg :iwy ... wm) = Asp.(sp — sp) * 4(sp=bp+4n)
xkspace(bp,n) * (Sp~> wp) * (SP+4 ~ w1) * -+ x (SPH4M ~~ w)
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Clpc)=c  (Spc) = (S,pc’)
(C,Spc)— (C,S,pc)

((H,K,R,P),pc) <> ((H',K',R,P'),pc’)

if c=

| then

P=P' A ((H.R).pc) = ((H".R).pc")

P=P' A ((K,R),pc) > ((K',R).pc)

cswitch

H=H"AK=K' AR'=R{ra:pc+1} A pc’ =R/(ra)
At=R(a0) At'=R(al)

AP ={t:runt": (rdy,R)}wP”’

AP ={t: (rdy,R"),t’ : run} WP’

ARandR is complete.

quit

H=H' A K=K’ At'=R(a0) A pc’=R/(ra)
AP ={t:runt’: (rdy,R)}yP”
AP ={t:deadt’ : run}wP”’

tnew r

H =H’wmckltx, Ry, ky) & blk(ky, kmaxsize
AP =Py {tx: (rdy,Rx)} AR=R Aty=R(r)
AK"=K blk(ky, kmaxsizg A pc’ =pc+1

tdelr

H’=H wmcktx, Ry, kx) & blk(ky, kmaxsize
AP=P' y{ty:dead A R=R Aty=R(r)
AK =K’ wblk(ky, kmaxsizg A pc’ =pc+1

mck1,R k)
blk(k,s)

ma1,R) W {1+24 : k}
{k:_k+4:_ ... k+4(s—1):_}

L
L

Fig. 21.Operational semantics
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We use the following notations to specify data in TCBs:

{$9% A {4 QFF_STACK — k
t™'p 2 t4OFFNEXT — p
t"'q £ t40FF_PREV v
joiner . A .
t2%") 2 {4 OFF_JOINER v |

Then we define notations for specifying the exposed part d8.TChe notation
rtcb(t) specifies three pointers, among which the pointeyoatier points to a waiting
chain, specified bywQt. The notatioritcb(t) specifies three pointers, but the pointer of
joiner should benuLL. A dead thread should be joined immediately, and it is unrea-
sonable that the dead thread is waited for by other threanceSi thread A can wait
for a thread B, which can still wait for another thread C, thating chain will be a
linked list organized by the fielgloiner in TCBs. Its definition includes ready thread
resources and we don't discriminate abstract waiting tigedth ready threads in our
framework. The notatiotreb(t) is used to specify an empty TCB with all fields.

rev

°

next joiner

[1>

rtch(t) (t— ) x (t—_) «3j.(t —]) * WQ(j)
dteb(t) 2 (¢ P ) @ ")« 127 NuLL)
WQ(t) £ ({t) * rteb(t)) W§(t=NULL)

[1>

( ctxt ) (t stack

tcb(t) —_) = dtcb(t)

Since a ready thread may be connected to a waiting chainwtbus-define the ready
thread queue: each thread in the ready thread queue is ¢edrteca waiting chain,
which could be empty to indicate no waiting threads for thigéd.

prev / next

RQseg(t,t') £ (1) x (t—t") «3It". (t —>t") x RQseg(t” 1)
3. (7)) « wag)
4(t=NULL)

3t.(q — t) x RQseg(t,NULL)

RQseg(t,t') £
RQ(g) =
We add two new invariants andJ. The first oneX is used to specify the shared

resources beforguit. Like I, X also takes two parameteis., the ID of the thread
quiting and the new thread. The second drie used to specify the shared resources
after context switch. The reason why we dantere is that the last thread could be a
dead thread, or a ready thread. The two invariants also mekedpreciseand should
satisfy the following requirement:

VX () * () = I(t) VLI * (t) = I(t))

SinceX specifies the invariant before one threadyt, if it is added a dead resource of
the threadt), the separation conjuction will imply the invariantdif). The invarianX
shouldn't specify any stack resouce since stack resourees\aays private. If not, the
private stack space of one thread will be taken by other ttraad thus this thread will
be unable to be released and hard to tackle.
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7.3 Inference rules

The extended inference rules of new instructions are showfigure[22. We add a
notationA to specify the set of specification of new threads, each otkyhie assume,
is a static specificatiorip, 9)init, for a new-born thread.

A2 £ (p,Qinit

The specificatiorip, g)init States the initial resources of new threads: the curreaathr
resource, all registers and a block of stack space with a fimegkmaxsize

o [ [t] * [R] * kspace(R(sp), kmaxsizg) "
(P, Qinit = i

The rule of QuIT) states that if a thread wants to exit, it should have theWdhg
resources:

— [t]: the current thread resource;

— ({t'): resource of a ready thread,;

— (a0 — t'): the registero with value oft’;

— oX(t,t"): shared resources except the resources of two threaddt’.

The rule of ((NEW) states that the union of the following resources can bestlirn
into an abstract resource of a ready thread:

- (t kg k): resources of machine context and a cell of memory with viglue

— RThrd(A,t,R,K): resources satisfying the predicate of a concrete readwndthr
stack

NThrd(A,t,R) £ Fk.t ==k * hspace(k, kmaxsizg* (kspace(k, kmaxsizg —RThrd(A,t,R K))

The former is a part of TCB of a new thread, and the latter igadlst what the new
thread requires to run. Similarly, the rule ofgEL) is for reasoning about recycling
the concrete resources of a dead thread, specifiedioy(t, k).

7.4 Invariant of global resources

To ensure that the private stack of a thread is not sharedh&gtwe add a stack space
constraint in the definition ofThrd:

CThrd(W, t,pc) 2 3k. (t 22%K) +In. Cont(n, ¥, pc)

A ([t] *xIR. |R] * kspace(k,kmaxsizg¢« T)
The definition of a concrete ready thread is same with one in[&8, except it takes
one more parameter, the stack location
RThrd(W,t,R) £ |R] * [t] * ol (t) —«CThrd(W,t,R(ra))

We add a new definition of a concrete dead thmeadd, which is just equal to the stack
space of thread starting lat
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[t] % (t') * (20,21 = t,t') * (ra s _) x ol(t,t')
(P9 = [t] * (20,21 > t,t') % (ra — _) x o J(t)
WA LI XE{(p,9)} pc: cswitch

(t.t')
} >W(pc+1)

(csw)

* ! % (a ! * ! (tt>
[E {t') % (a0 — t') <>X(t7t)} o W(pet1)

WA 1LI, X {(p,9)} pc:quit

mw:{

(TQuUIT)

(r 1) « 3R (LS R) « NThrd (A1, R)
mmé{
(r —t) ()

WA LI, XE{(p,g)}pc:tnewr

(r —t) = (t) ®
(P.9)= { ctxt stack . } >W(pc+1)
(r = t) * (t = _) x3k. (t == K) * hspace(k, kmaxsize

w7A7|7J7XF{(Qg)}pc:tdelr
VEedomW). WA ILJIXFE{W(E)}E:Cf)
ACYW VfedomA).Af) = (p,Q)init
WA ILIXFEC

®)
} >W(pc+1)

(TNEW)

(TDEL)

(cbHP)

Fig. 22. Extended inference rules

DThrd(t) 2 Tk (t 22%) « kspace(k, kmaxsize

The invariant of global resources is defined as below:
GINV(W,Ppc) £ CThrd(W,t,pc) * RThrd(W,tg,Ry) * - -+ * RThrd(W,tm, Rm)

*DThrd(tmy1) * --- * DThrd(tn) * T
whereP={t : run,tg : (rdy,Ry),...,tm: (rdy,Rm),tm1 : dead... t, : dead}

7.5 Soundness

By the invariantGINv, we can prove the soundness theorem of this extension of our
proof system.

Theorem 6. For any machine configuratiofC, S pc), if its code is verifiedV, A, 1,1, X -
C and its state satisfies the global invarig®t GINV(W,P,pc), and if the state can be
mapped to a physical statg)} S, then it is safe to ruisafe(C, S pc)).

Machine translation.The translation from abstract machine defined in this sed¢tio
physical machine defined in Secti@f is simple to define. The new commangdsw
andtdel can be translated to a nop like instructiaadi r, 0, which doesn’t change the
state. The commanghit can be implemented by instructions easily.
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tquit:

1w sp, 20(a0)
1w a2, 16(a0)
1w a1, 12(a0)
1w a0, 8(a0)
1w vO, 4(a0)
1w ra, 0(a0)
ret

7.6 Verification example

We define three invariants of shared resources as below:
(t,t)

[I>

#(t =sched) * (cur ~— t') * rtch(t’) * RQ(rq) * DQ(dq)

WV f(t' =sched) * (cur — t) * ({t) —xRQ(rq)) * DQ(dq)

#(t' =sched) * (cur > t) * RQ(rq) * ({t) —xDQ(dq))

f(t=sched) * (cur — _) *x RQ(rq) * DQ(dq)

W #(t # sched) « rtcb(t) * (cur +— t) * (sched) * RQ(rq) * DQ(dq)

>l

The code and assertions are presented in Fige@?.
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create:

{[t] * teb(t’) * RQ(xq) * #(t" € dom(A))
x(a0,al1,a2,v0,ra — t' £, _,_ ret) x K(bp,20)}
subi sp, 4
sw ra, 0(sp)
call kalloc
{[t] * teb(t’) * RQ(rq) * hspace(k,kmaxsizg
*(a0,a1,a2,v0,ra — t' £,k _) * #(t’ € dom(A)) * K(bp,19,ret)}
sw vO0, OFF_STACK (a0)
sw al, 0(a0)
addi vO, KMAXSIZE-1
sw vO0, OFF_SP(a0)

movi vO, 0
sw vO0, OFF_JOINER(a0)
tnew a0

{[t] * {t') * rtcb(t’) * RQ(xq)
x(a0,al,a2,v0,ra — t',_, _ k) x K(bp, 19 ret)}

mov al, a0
movi a0, rq
call enq
{[t] *RQ(rq) * (a0,al,a2,v0,ra — _,_,_,k _) x K(bp,19 ret)}

1w ra, 0(sp)
addi sp, 4

{[t] * RQ(xq) * (a0,a1,a2,v0,ra — _,_,_,_,_) x K(bp,19 ret)}

ret

Fig. 23. Verification of create ()
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exit:

{[t] * rtcb(t) * (cur > t) * RQ(rq) * DQ(dq) * (sched)

*(a0,a1,a2,v0,ra — _,_,_,_,_) x K(bp,20)}
movi a2, cur
1w a0, 0(a2)
1w al, OFF_STACK (a0)
bz al, exit_quit

(1] €2 ) w5 ) w @2 s t7)  rch(t)
*(cur — t) * RQ(rq) * DQ(dq) * (sched)
*(a0,a1,a2,v0,ra  t,t' cur, _, joker) x xK(bp,20)}

movi a0, rq
call enq
movi al, 0
sw al, 36(a0)
{[t] * dtcb(t) * (cur — t) x RQ(rq) * DQ(dq)  (sched)
x(a0,al,a2,v0,ra — t,0,_,_,_) * K(bp,20)}
exit_quit:
{[t] = dtcb(t) * (cur — t) x RQ(rq) * DQ(dq) * (sched)
*(a0,al,a2,v0,ra — t,0,_,_,_) x K(bp,20)}
mov al, a0
movi a0, rq
call enq
movi ao, sched
{[t] * (cur — t) * RQ(xrq) * ({t) —+DQ(dq)) * (sched)
*(a0,al,a2,v0,ra — sched,_,_,_,_) x K(bp,20)}
quit

Fig. 24. Verification ofexit ()
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join:
{[t] * rtcb(t) * (cur — t) x RQ(rq) * DQ(dq) * (sched)
% (a0 — t') x (v0,a1,a2 — _) * (ra — W) * K(bp,20,-)}

addi sp -12
sw ra 8(sp)
sw a0 4(sp)
movi a2 cur
1w a0, 0(a2)
sw a0, 0(sp)

join_loop:
{[t] * rtcb(t) * (cur > t) * RQ(rq) * DQ(dq) * (sched)
x(a0 — _) x (v0,al,a2,ra > _)
K(bp,17,t ::t" ;i wp)}

movi a0, dq

1w al, 4(sp)
call rmq

bz vO, join_free

{[t] * rtcb(t) * (cur — t) x RQ(rq) * DQ(dq) * (sched)
x(a0 — _) x (a1l — t') * (v0,a2,ra — _) * K(bp,17,t ::t" i w) }

movi a0, rq
call inq
bz vO, join_in

jmp join_ret
join_in:
{[t] * rteb(t) * (cur ~ t) * (t’) * rtcb(t’) * DQ(dq) * (sched)
#((t') x rteb(t’) —«RQ(zq))
x(a0 — _) x (a1l — t') * (v0,a2,ra — _) * K(bp,17,t ::t" i w) }

1w a0, 36(al)
bz a0, join_wait
movi vO, -1

jmp join_ret

Fig. 25. Verification of join() (part 1.)

43



join_wait:
{[t] * rteb(t) * (cur = t) * (t') * dicb(t’) * DQ(dq) * (sched)
*((t') * rich(t’) —*RQ(xq))
%(a0 — 0) * (al > t') * (v0,a2,ra — _) *x K(bp,17,t ::t’ :2wy )}

1w a0, 0(sp)
sw a0, 36(al)
movi al, sched

{[t] * (cur — t) * ((t) —=*RQ(rq)) * DQ(dq) * (sched)
*(a0 — t) * (al + sched) * (v0,a2,ra — _)
*K(bp,17,t 1 t' i wp)}

cswitch
jmp join_loop
join_free:

{[t] * rteb(t) * (cur — t) * RQ(xq) * (t') * dtcb(t’) * DQ(dq)
%(a0 — _) x (a1l — t') * (v0,a22,ra — _) * (sched)
*K(bp,17,t i t' w) }

tdel al
1w a0, 24 (al)
call kfree

{[t] * rteb(t) * tcb(t’) * (cur — t) * RQ(rq) * DQ(dq) * (sched)
x(a0,a1 — _) * (v0,al,a2,ra > _) * K(bp, 17,t 1t/ - wp)}
movi vO, 0
join_ret:
{[t] * rtcb(t) * (cur > t) * RQ(rq) * DQ(dq) * (sched)
*(a0,a1,a2,ra — _) * K(bp,17,t ::t/ ;2 w)
*(vO — 0) V (vO — -1)}
1w ra, 8(sp)
addi sp, 12
{[t] * rtcb(t) * (cur > t) * RQ(rq) * DQ(dq) * (sched)
x(a0,al,a2 — _) * (ra — W) * K(bp, 20,-)
#((v0 = 0) x tcb(t')) W (vO — -1)}

ret

Fig. 26. Verification of join() (part 2.)

44



schedth:
{[sched] * (cur — t) x (t) x ((t) —*RQ(zq)) * K(bp,10,-)
*(v0 > _) x (a0 — _) * (al > _) x (a2 — _) * (ra > _)}
movi a0, rq
{[sched] x (cur — t) x RQ(rq) * K(bp,-,")
%(v0 > _) % (a0 — rq) * (al — _) % (a2 — _) * (ra — _)}
call deq
bz vO, schedth
{[sched] * (cur — t) x (t') * pteb(t’) * RQ(rq) * K(bp,10,-)
*¥(vO = t) % (20—~ ) * (al = ) x (a2 — _) * (ra > _)}

movi a2, cur
sw vO, 0(a2)
mov al, v0

1w a0, sched

{[sched]  {t') * (cur ~ t) * ptcb(t’) * RQ(rq) * K(bp,10,-)
% (v0 > t') % (a0 > sched) * (al — t') x (a2 — _) * (ra — _)}
cswitch
{[sched] * It”. (cur — t”) * ({t") —*RQ(rq) * K(bp, 10, -)
*(v0 > t') % (a0 — sched) * (al — t') x (a2 — _) * (ra — _)}
jmp sched th

yield:
{[t] * rtcb(t) * (cur — t) * RQ(rq) * K(bp, 10,-)
x(vO > _) % (a0 — ) x(al — _)* (a2 +— _) x (ra — _)}

movi a0, rq
movi a2, cur
1w al, 0(a2)
call enq

movi a2, cur
1w ao, 0(a2)
movi al, sched
csw

ret

Fig. 27. Verification of schedth () andyield()
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kill:

{[t] * rtcb(t) * RQ(rq) * DQ(dq)
*(a0 — t') * (v0,a1,a2 — _) * (ra — W) x K(bp,20,-)}

addi sp -8
sw ra 4(sp)
sw a0 0(sp)

{[t] * rtcb(t) * RQ(xq) * DQ(dq)
x(a0 — t') % (v0,al,a2,ra — _) x K(bp, 18" ;1 wy)}

mov al, a0

movi a0, dgq

call inqg

bz vO, kill ret

{[t] * rtcb(t) * RQ(rq) * DQ(dq)
*(a0 > dq) * (al > t') x (v0,a2,ra — _) x K(bp,18t" ::wr)}

movi a0, rq
call inqg
bz vO, kill_inrq

{[t] * rtcb(t) * RQ(xq) * DQ(dq)
x(a0 — rq) * (al > t') x (v0,a2,ra — _) x K(bp,18t" ::w)}

jmp kill_ret
kill_inrq:
call rmq
bz vO, kill_ck
jmp kill_ ret
kill rmrq:

{[t] * rtcb(t) * (t') * rtcb(t’) * RQ(rq) * DQ(dq)
% (a0 — rq) * (al > t') x (v0,a2,ra — _) x K(bp,18t" ::w)}

1w a2, 36(al)
bz a2, kill_endq
mov al, a2
call enq

kill_endq:
1w al, 0(sp)
sw vO, 36(al)
movi a0, dgq
call enq

kill ret:
1w ra, 4(sp)
addi sp, 8

{[t] * rtcb(t) * RQ(rq) * DQ(dq)
x(v0,a0,al,a2 — _) x (ra — W) * K(bp,20,-)}

ret

Fig. 28. Verification ofkill ()
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8 Extension 3: Scheduling over SMP

In this section, we extend our proof system to verify a schedwith symmetrical
multiprocessing support and simple load balancing meshani

We show a simple example that doing thread scheduling ovéipieprocessors in
Figure??. We introduce a new struct for each processor to record tha-deda of the
processor. Since the processors cause concurrency, weegdsome synchronization
operations, spin locks, to protect shared memory. The st@efbllows the pattern (I1)
explained in the Sectiop?. Different from the version on uniprocessor, each proaesso
has its own thread run queue. The scheduler finds the nexablmthread in the local
thread run queue, and a load balancer can move threads Inetwegueues of different
processors.

In this example, we omit interrupts for simplicity and we @s® there is a special
operationcpuid() from that we can have the identity of the processor. We thernass
that the identity numbers of processor are from zenetw — 1, wherencpu is the total
number of processors. We extend the thread control blodk evie more field¢puid,
to record which processor the thread runs on.

If athread run queue owned by some processor is empty, Tleédunoadbalance ()
can be invoked to pull some runnable threads from the rurejaéthe busiest proces-
sor. Therefore, each run queue structure has one spedialbéch is implemented as
a spin lock, to protect the run queue. If a thread attemptsdoiee a spin lock while
it is contended, the thread will busy spins waiting for thekido become available.
The spinning prevents more than one thread of execution éatering the critical re-
gion at any one time. We implement a naive algorithm of spak lwith an actomic
compare-and-swap instructi@shg.

In the structpu, we add containing processor related information. Thetpotarr
points to the current running thread on the processor-gmubints to the thread queue
of the processor.

To support SMP, the scheduler functighedule () should be upgraded as follows:

— The pointer of thread queue of the current processor shautbtained via calling
cpuid().

— Before accessing thread run queue, the code must acquiwekts

— Ifthere is no more thread in the current thread run queuescheduler will calling
loadbalance() to move some threads from some busy processor.

— The scheduler get the next thread from the current threagueure. If fails, the
function will return immediately. If succeeds, it will séigcpuid of the next thread,
change the pre-CPU variabderr and peform context switch.

— Most importantly, the scheduler need to get the CPU-ID ag#ér returning back,
for the current thread might be migrated to another processdwake up there.

— The scheduler need to release the lock of the current runedeefore return. Read-
ers may notice the subtle problem, a thread may release thethat it didn’t
acugire because of thread migration. Interestingly, ag Emevery thread releases
the lock of the the thread run queue of the current threadytrl is going to be
in order.
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struct tcb {
struct context ctxt;
struct tcb *prev;
struct tcb *next;

};

struct spinlock {
int locked;
};

struct cpu {
struct spinlock lock;
struct tcb *curr;
struct queue rq;
}cpus [NCPU] ;

void lock(struct spinlock *1k)
{

while (xchg(&lk->locked, 1) != 0);
}

void unlock(struct spinlock *1k)

{
xchg (&1k->locked, 0);
¥

void schedule()

{

struct tcb *curr, *next;

struct cpu *cpu;

cpu = &cpus[cpuid()];

curr = cpu->curr;

lock(&cpu->lock) ;

next = deq(&cpu->rq);

if (next == NULL) {
unlock (&cpu->lock) ;
loadbalance();
lock(&cpu->lock) ;
next = deq(&cpu->rq);
if (next == NULL)

goto sched._ret;

}

enq(&cpu->rq, curr);

cswitch(curr, next);

cpu = &cpus[cpuid()];

sched_ret:

}

unlock(&cpu->lock) ;
return;

void loadbalance()

{

struct cpu cpuO, cpul;
struct tcb *mt;
struct cpu *cpua, *cpub;
cpu0 = cpus[cpuid()];
cpul = busiest_cpu(cpu0);
if (cpul == NULL) goto Llb_end;
cpua = cpuO;
cpub = cpul;
if (cpu0 > cpul)

swap(cpua, cpub);
lock(&cpua->lock) ;
lock(&cpub->lock) ;
mt = deq(cpul->rq);
if (mt == NULL) goto Llb_end;
enq (&cpu0->rq, mt);

Llb_end:

}

unlock (&cpub->lock) ;
unlock (&cpua->lock) ;
return;

Fig. 29. Implementation of scheduler over SMP
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o +  Thread A
Lo
AT — ™
-_——-

l cswitch(A,B) T l cswitch(C,A)
Y

Fig. 30.Ownership transfer of load balancing

(Mach) W == (C,Y,M,P)

(CPU) X = (Rpc)

(Thrd) T = (rdy,R) | (run,u)

(Pool) P = {t:T}

(CPUSet) Y i= {u: X}

(CPUI) uv == w

(Mem) M = {l:w}* (1=4n,n=0,1,2,...)
(Code) C = {f:c}*

(Instr) c = i|cswitch|cpuidr |xchg rqg,w(rs)

Fig. 31. Definition of abstract machine

The idea ofthreads as resourceis still helpful to reason about load balancing.
Thread resources bound with TCBs are migrated back and &nthng processors.
Thread resources don’t only provide the knowledge of caedteeads in the system,
but also provide the knowledge that which processor onathisebelong to. We extend
the running thread with processor informati@n, u], that means the threads running
on the processor whose ID nhumbeuis

8.1 Abstract machine and operational semantics

To support multicore machine, we add a notatido specify a set of processors, each of
them has a register file and a program counter. The runniriggabthread is extended
with a processor-1Dy, which is just a machine word. The instruction set of the nrazh
is extended with an atomic instructiofthg rq, [rs+w] to exchange the value (in the
registerrs) with the value in memory (addressedy.

The operational semantics of instructions is shown in[Efy.The new instruction
cpuid r puts the CPU-ID into the register And the other new instructiofchg ex-
changes the value in a register with the value in a memoryAkbf other instructions
are same to the definitions in Fig?. For the abstract instructionswitch, it set the
CPU-ID of the current processor to the next ready thread.prédicateatomicis used

49



‘ (u,R,pc,M) 2y (u,R,pc’,M’)

ifi= then

xchg rg,w(rs) [M'=M{R(rs)+w:R(rq)} A pc’=pc+1
AR =R{rq:M(R(rs)+w)}

otherwise (R pc,M) N (R,pc’,M)

(u,R.pc,M,P) <5 (U,R,pc’, M/, P') |
if c= then
cswitch | IR",P” ,pc” . M=M’' At=R(a0) At'=R(al)
AP ={t: (run,u) t’: (rdy,R)}wP”
AP ={t: (rdy,R"), t': (run,u)}wP”’
Apc”=pc+1 AR'=R{ra:pc+1}
RandR is complete.

atomiqi) £ i € {xchg rq, [rs+w}

Fig. 32. Operational semantics of instructions (smp)

to specify whether an instruction is an atomic instructiehjch locks the data bus to
prevent memory from being accessed by other processoreer@iyr only thexchg is
atomic.

The operational semantics of our multicore machine is shovwig. ??. One exe-
cution step of a processor is either an atomic step or a cogmstep. If a processor
runs one atomic step, it goes forward without stop. Whileri@ins one concurrent step,
it may go forward or be stopped by other atomic instructiorotrer processors. The
step relation for the whole multicore machine is in the forfim o

(C.Y.M.P)— (C.Y,M',P))

If one processor runs an atomic instruction, all of othercpssors are stopped from
execution. And if no atomic instruction at a time, then abhgessors can run one step
or not.

The notation of an abstract running thread is changed:tal], adding the current
processor-ID. The notation of an abstract ready thead

toul
)

AMRP).M={-} AR={-} AP={t: (run,u)}
AM,RP).M={} AR={} AP={t:(rdy,X)}

2
2
8.2 Inference Rules

We only show inference rules new in Figur@ Other rules are similar with the rules
defined previously. The judgments of this version of vertfaaframework is of the
form:
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c=C(pc) atomidc) (u,Rpc,M,P)< (u,R, pc/,M,P)
(C,u, (R pc),M,P) —atomic(C u (R, pc’), M, P')

c=C(pc) atomidc) (u,R pc,M,P) <, (u,R,pc’,M' P
(C7 u7 (R7PC)7 M7 P) Hconc (C7 u7 (R,7PC/)7 M/7 P/)

(C,u,(R,pc),M,P) —=Lo"¢(C u, (R,pc),M,P)

(C,u, X, M, P') —atomic(C y x/M’ P')
Y(u)=Xc Y'=Y{uc: X}
(C,Y, M, P) — (C,Y’, M’, P’)

VKE {17" : 7n}' (C7 uk7xk7M) Hconc (C7 uk7xii7 M/)
X={up: Xq,up: Xz,...,un: Xn b X'={ug 1 X{,up: XJ,....un: X} }
(C.Y,M,P) — (C,Y',M",P")

Fig. 33.Operational semantics of abstract machine (Ext. 3)

W l-{(p,g)}pc:c

To verify the code running on multicore machines, we dravagdef ownership
transfer from concurrent separation lodic][17]. By definingariants for shared re-
sources, our proof system ensures safe operations. Lile®io@mt separation logic, the
invariants in our proof system are abstract and can be itiatad to concrete definitions
according to the concrete implementation of kernels. Inticale machines, there are
two kinds of shared resources.

The first kind is the global resources shared by all proces$te use a notation
to specify the invariant of global resources. If one threeckases the resources spec-
ified by I, it should use kernel synchronization operatiang,, spin locks, to protect
accessing. The invariahtis a partial map from lock locations to assertions.

2 € Word — Assert

The notationis is used to specify all the global resources, and it is defireed hig
separation conjunction assertion of all of the assertinrkes:

Iz £ Olegomis)(l = 0 emp) W (I = 1% Z(1))

We define an operator to append the shared resourcesgptg)gpair so as to specify
actions performed by actomic instructions, likeg etc.
(p,g) xls £ (pxls, (AS,S'.VS1,52.8=510S2 = pS1
— 15 S — 38,,8,.8' =S| WS,H A gS1 ] Als S}))
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V£ edom(C).W,Z 1 +{(p,g)} £:C(£)
WEIFC

(CDHP)

(rt = W) % (zstw o w)) ") v
(Tt = W) x (rg+w — W) >#lpett)

(p,9) * Is = {

XCHG
W21 +{(p,9)} pc: xchg rt, [rs+Ww] ( )

(a0,al 5 t) * [t O U] = (t') = I (u,t,t) (utt)
(p7g) I I ” [>LP(PC+1)
(20,al > ) xAv. [t OV« 3. (") % I (vt 1)
W, 51 - {(p,g)} pc:cswitch

(csw)

Fig. 34.Inference rules of Ext. 3

Despite the two forms of concurrency, one thread can alaonvatily perform con-
text switch to relinquish processor. The invariangéndl defined in the Se®? specify
the resources, coming either from global shared resoupeesCPU shared resources,
or thread local resources, transferred through contextkwihey need one more pa-
rametery to relate resources with processors.

| € CID— TID — TID — Assert

The rule(xcHa) is for atomic instructiorchg. Atomic instruction can access mem-
ory with bus locked, and then have the resources of globaéghmemory. So the spec-
ification of this instruction is the separation conjunctafriocal resources and shared
resourcess. The requirement is that the resources of global shared mesmuld
satisfy its invariant before and after the accessing by atamstructions.

The rule(cswricH) requires that the transferred shared resources shoutdysati
I (u,t,t’) with respect to the current processor ID. After contextsvib the same thread,
it may wake up on a different processor with different a pssce ID.

8.3 Concrete thread resources and soundness

After changing of the concept of abstract running threadsneed change the defini-
tions of concrete threads likewise. The continuation ofradl is same to the definition
in Sectiori 4. We list the definitions that only need to be cleaere.

Running thread The definition of a concrete running thread is the resoursesrged by
the assertiom and the continuation. The resources should include theaathsesource
of the current running thread and all registers.

CThrd(W,u,t,pc) = 3Fn.Cont(n,W,pc) A ([t O U] * || * true)
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Ready thread.For a ready thread, its concrete resources can be defineghyasen
implication —: if given the resources of machine context dégg, (2) its own running
thread abstract resource,> u], on an unknown processor, and (3) shared resources
specified by 1(t), a ready thread can become a running thread.

RThrd(W,t,R) £ |R|*3u.[t O u] *3t' . (') x ol (u,t',t)
—x CThrd(W,u,t,R(ra))
The second parameter®fhrd is the ID of the thread and the third parameter is the ma-

chine context data saved in its TCB. Please note that thegmogounter of a runnable
thread is saved into the register.

Invariant of global resourcesThe invariant of global resources is defined with respect
to the structure of the thread pool.

GINV(W,Y,Ppc) £ (|Ry] —+CThrd(W,Ug,to,pcg)) * -+ * (| Rn| —+CThrd(W, Un,th, pcp))
*RThrd(W,tn+1),Rin+1)) -« RThrd(W,th;1, Rnta)
whereY ={up : (Ro,pcq), ---, Un:(Rn,pcp)}
whereP={tg: (run,ug) ..., tn:(run,un),thea : (rdy,Ras1), ..., tnem: (rdy, Ryym)}

8.4 Soundness

The global invariant of the whole machine is defined as belldve memory resources
and abstract thread resources can be partitionednintarts, wheren is the number
of processors. Each processor along with its resourcesfisatthe interpretation of
abstract threads that it owns.

8.5 \Verification of scheduler and load balancer

The assembly code of scheduler and load balancer are shofiglne[3%E3P. The
global shared resources are the thread run queues owndgbyassors. The invariant
5 is defined as a map froik; to assertion specified BBQu).

[(u,t,t") £ curr(u,t’) * pteb(t’) * ({t) —xRQ(u))

> {Iko: RQ(0), ..., Ikn: RQ(n)}
wherelk,=CPUS+u x SIZE_CPU+O0FF_LOCK

[I>

pteb(t) 2 (t 25 ) w12 )

RQ(u) £ 3rg.#(rq = CPUS+U x SIZE_CPU-+OFF RQ) * RQ(rq)
curr(u,t) £ ((CPUS+U x SIZE_CPU+OFF_CURR) + t)

wherecpus is the starting location of the array of cpu strucsze_cpu is the size of
the cpu structprFF_LOCK, OFF_RQ andOFF_CURR are the offsets of fields in the cpu struct
defined in Figuré&29.
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{[t O u] = pteb(t) * curr(u,t) * (a0,al,a2,v0,ra — Wl,w2,w3,_,ret) x K(bp,20)}

schedule:

subi sp, 28

sw ra, 24 (sp)

sw a2, 20(sp)

sw ail, 16(sp)

sw a0, 12(sp)
{[t © u] = ptcb(t) * curr(u,t) * (a0,al,a2,v0,ra — _,_,_,_,_)
xK(bp, 13, i - - nwl w2 w3 :iret)}

cpuid a0

call getcpu
{[t © u] * pteb(t)  curr(u,t) * (a0,a1,a2,v0,ra + U,_,_,CPUS[ul,_)

«K(bp,13,_ i _ - wl w2 w3 iiret)}
sw v0, 8(sp)
1w a0, OFF_LOCK (v0)
call lock
{[t © u] = pteb(t) * curr(u,t) * RQ(u) * (a0,al,a2,v0,ra — CPUS|u],_,_,CPUS[u],_)
xK(bp,13,_ :: _ :: CPUS[U] :: wl ::w2 ::w3 ::ret) }
1w a0, OFF_RQ(v0)
call deq
bz vO, sched_1b
jmp sched_cont
{[t © u] * pteb(t) * curr(u,t) * RQ(u) * (a0,al,a2,v0,ra — CPUS|u],_,_,NULL,_)
*K(bp,13,_ :: _ :: CPUS[u] ::wl w2 ::w3::ret)}
sched_1b:
1w a2, 8(sp)
1w a0, OFF_LOCK (a2)

call unlock

{[t © u] * pteb(t) * curr(u,t) * (a0,a1,a2,v0,ra — CPUS[u],_,_,NULL, _)

*K(bp,13,_ :: _ :: CPUS[u] 1wl w2 ::w3::ret)}
call loadbalance
{[t © u] * ptcb(t) * curr(u,t) * (a0,a1,a2,v0,ra — CPUS[U],_,_,_,_)
*K(bp,13,_ :: _ :: CPUS[u] 1wl w2 ::w3::ret)}
1w a2, 8(sp)
1w a0, OFF_LOCK (a2)
call lock
{[t © u] * ptcb(t) * curr(u,t) * RQ(u)
*(a0,al,a2,v0,ra — CPUS[U],_,_,_,_)
xK(bp,13,_ :: _ :: CPUS[U] :: wl i w2 ::w3 ::ret) }
1w a2, 8(sp)
1w a0, OFF_RQ(a2)
call deq
bz vO, sched_ret

{[t © u] * pteb(t) * curr(u,t) * RQ(U) *Ft". * (t’) * ptch(t’)
*(a0,a1,a2,v0,ra — _,_,t/ NULL,_)
xK(bp,13,_ :: _ :: CPUS[u] :: wl w2 w3 ::ret) }
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{[t © U] * pteb(t) * curr(u,t) * RQ(uU) *Ft’. * (t') * ptcb(t’) * (a0,a1,a2,v0,ra — _,_,t/, NULL, )

*K(bp,13,_ :: _ :: CPUS[u] 1wl w2 ::w3::ret)}
sched_cont:
sw v0, 0(sp)
1w a2, 8(sp)
1w al, OFF_CURR(a2)
sw al, 4(sp)
1w a0, 0FF_RQ(a2)

{[t © u] * pteb(t) * curr(u,t) * RQ(U) *Ft". * (t’) * ptcb(t’)
*(a0,al,a2,v0,ra — CPUS[U]+0FF_RQ,t,CPUS[u], NULL,_)
*K(bp,13,t" ::t :: CPUS[uU] :: wl w2 ;w3 iret)}

call enq
{[t O u] * ({t) —«RQ(u)) * curr(u,t) = It’. * (t') = ptcb(t’)
% (a0,a1,a2,v0,ra — CPUS[U|-+0FF_RQ,t,CPUS[U],_,_)
xK(bp,13,t" ::t :: CPUS [ul 1wl w2 w3 :iret)}

1w a2, 8(sp)
1w al, 0(sp)
sw al, OFF_CURR(sp)
1w a0, 4(sp)

{[t O u * ({t) —RQ(u)) * curr(u,t’) *Ft".  (t') * ptcb(t’)
x(a0,a1,a2,v0,ra — t,t',CPUS|U],_,_)
xK(bp, 13t ::t :: CPUS [u] ::wl w2 w3 :iret)}

cswitch
{3 . [t O U] * pteb(t) + curr(U,t) *Bt”. + ") * (ANGY" —xRQ(U'))
x(a0,al,a2,v0,ra — _,_,_,_, )« K(bp,13,_ i _ i _iwl:w2:w3:iret)}

cpuid a0

call getcpu
{3U [t O U] * pteb(t) * curr(U,t) * Ft”. * () * (ANGt" —xRQ(U))
*(a0,a1,a2,v0,ra — U,_,_ CPUS[U], ) x K(bp,13,_ 1 _ = _:wl w2 w3 :iret)}

sw v0, 8(sp)

1w a0, OFF_LOCK (v0)

call unlock
{3U . [t O U] * ptecb(t) * curr(U,t) * (a0,a1,a2,v0,ra — _,_,_,CPUS[U],_)
*K(bp,13,_ ::_ 1 CPUS[U] :: wl - w2 ;1 w3 ret) }

1w a0, 12(sp)

1w ail, 16(sp)

1w a2, 20(sp)

1w ra, 24 (sp)

addi sp, 28

{3U [t O U] * pteb(t) * curr(U,t) * (a0,a1,a2,v0,ra — wl w2 w3, _,ret) * K(bp,20)}

ret

Fig. 36.Ext. 3: Verification of scheduler (part two)
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{(a0,a1,ra r Ik,wl, ret) * K(bp, 1) = #(Ik € dom(Z))}

lock /* a simplest spin lock */
addi sp, -4
sw al 0(sp)
{(a0,a1,ra — Ik, _,ret) x K(bp,0,wl) x #(lk € dom(X))}
lock  _loop:
movi al, 1
{(20,a1,ra — Ik, 1,ret) x K(bp,0,wl) « #(Ik € dom(X))}
xchg al, 0(a0)
{3x.(20,a1,ra > Ik,x,ret)  K(bp,0,wl) * ((fx=1) V (tx=0) * A(IK)) * #(Ik € dom(Z))}
bz al, lock_ret
jmp lock_loop
{(a0,a1,ra — Ik,0,ret) « K(bp,0,wl) « A(Ik) * #(Ik € dom(X))}
lock _ret:
1w al, 0(sp)
addi sp, 4
ret

{(a0,a1,ra — Ik,wl,ret) x K(bp,1) « A(Ik)}

unlock:
addi sp, -4
sw al, 0(sp)
movi al, 0
xchg al, 0(a0)
{(a0,a1,ra — Ik,0,ret) « K(bp,0,wl)}
1w al, 0(sp)
addi sp, 4
{(a0,a1,ra — lk,wl,ret) x K(bp,1)}
ret

Fig. 37.Ext. 3: Verification of lock/unlock
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{[t © u] * ptcb(t) x (a0,a1,v0,ra — _,wl,_,ret) « K(bp,10)}

loadbalance:
subi sp, 24
sw ra, 20(sp)
sw al, 16(sp)
{[t © U] x ptcb(t) x (a0,a1,v0,ra — _,wl,_,ret) « K(bp,4,_ :: _::_ i _wliret)}
cpuid a0
call getcpu
{[t © u] * ptcb(t) * (a0,al,v0,ra — u,wl,CPUS[u],_) * K(bp,4,_ :: _::_ i _:wliret)}
sw vO0, 12(sp)
mov a0, vO
call busiest_cpu
bz Llb_end
{[t © u] * pteb(t) * I . (a0,a1,v0,ra — CPUS[uU],wl,CPUS[U], ) * (U’ # u)
xK(bp,4,_ :: _ i _ 1 CPUS[u] w1 ::ret)}
sw vO, 8(sp)
1w a0, 12(sp)
{[t © u] * ptcb(t) x I . (a0,a1,v0,ra — CPUS|[uU],wl,CPUS[U],_) * (U’ # u)
*K(bp,4,_ :: _ 1 CPUS[U] :: CPUS[U] :: Wl ::ret)}
sub vO, a0
bgt vO, Llb_swap
{[t © u] * ptcb(t) * I . (20,a1,v0,ra — CPUS[uU,wl,_, ) * (fu>U)
*K(bp,4,_ 1 _ 1 CPUS[U] :: CPUS[u] :: wl ::ret) }
sw a0, 4(sp)
1w al, 8(sp)
sw al, 0(sp)

{[t © u] * ptcb(t) x I . (a0,a1,v0,ra — CPUS[u],CPUS[U],CPUS[U],_) * (fu > U)
*K(bp,4,CPUS[U] :: CPUS[u] :: CPUS[U'] :: CPUS[u] :: Wl ::ret)}

jmp L1b_1b

Llb_swap:
sw a0, 0(sp)
1w al, 8(sp)
sw al, 4(sp)

{[t © u] * ptcb(t) * I . (a0,a1,v0,ra — CPUS[u],CPUS[U],CPUS[U],_) * (fu > U')
*K(bp,4,CPUS|[u] :: CPUS[U/] :: CPUS[U'] :: CPUS[u] :: W1 ::ret) }

Fig. 38.Ext. 3: Verification of loadbalance (part one)
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{[t © u] * ptcb(t) x I . (a0,a1,v0,ra — CPUS[u],CPUS[U],CPUS[U],_) * (fu > U)
*K(bp,4,cpua:: cpub:: CPUS[U] :: CPUS[u] :: w1 ::ret)
*(fu> U A cpua=CPUS[u] A cpub=CPUS[U']) V (fu < U A cpua=CPUS[U] A cpub=CPUS|u])}

L1b_1lb:

1w al, 4(sp)
1w a0, OFF_LOCK(al)
call 1lock
1w al, 8(sp)
1w a0, OFF_LOCK(al)
call 1lock

{[t © u] * ptcb(t) * I . (a0,a1,v0,ra — CPUS[u],CPUS[U],CPUS[U],_) * (fu > U')

xK(bp,4,cpua:: cpub:: CPUS[U] :: CPUS[u] :: Wl :: ret)

*(fu> U’ A cpua=CPUS[u] A cpub=CPUS[U]) V (fu < U A cpua=CPUS[U'] A cpub=CPUS|[U]) * Z(u) = Z(U')}

1w al, 8(sp)

1w a0, OFF_LOCK(al)

call deq

bz vO, Llb_end

1w al, 12(sp)

1w a0, OFF_LOCK(al)

mov al, v0

call enq

1w al, 8(sp)

1w a0, OFF_LOCK(al)

call unlock

1w al, 4(sp)

1w a0, OFF_LOCK(al)

call unlock
{[t © u] * ptcb(t) * (20,a1,v0,ra — CPUS[u],CPUS[U],CPUS[U],_)  (fu> U)
*K(bp,4,_ 1 _ 1 CPUS[U] :: CPUS[u] :: wl ::ret) }

Llb_end:
sw al, 16 (sp)
sw ra, 20(sp)
addi sp, 24

{[t © U] = ptch(t) * (a0,a1,v0,ra — CPUS[U],CPUS[U],CPUS[U],-) * K(bp,10)}

ret

Fig. 39. Ext. 3: Verification of loadbalance (part two)
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9 Related work

Gotsman and Yan@ [7] proposed a two-layer framework to yasdhedulers. The proof
system in the lower-layer is for verifying code manipulgtiniCBs, while the upper-
layer is for verifying the rest concurrent code of the keri@@hce thread queues and
TCBs are hidden from the upper-layer, one thread could nat hay knowledge of the
others, thus their proof system is unable to verify the salied pattern of Il and IIl.
Similar to our assertioRThrd(---), they introduced a primitive predicafroces&s) to
relate TCBs in the lower-layer with threads in the uppeefaput there is no counter-
part of (t) in their framework.

Fenget al. also verified a kernel prototyp&][3] in a two-layer framewo@ode
manipulating TCBs needs to be verified in the lower-layerhairt framework. The
TCBs are connected with actual threads in the upper layenliytarpretation function
of their framework. Our use of global invariant is similatheir use of the interpretation
function. In the upper-layer, information of threads is @ately hidden. Thus, their
framework also fails to support the verification of the sakledpattern of Il and III.

Ni et al. verified a small thread manager with a logic systeni[16,1a{ supports
modular reasoning about code including embedded codegpsinh their logic, how-
ever, there is no abstraction of threads. Multithreadedarms are seen as sequential
interleaving of pieces of code in low-level continuatiorsgiag style. Therefore, TCBs
with embedded code pointers can be treated as normal datairi®e the reasoning
level of their method is too low without any abstraction, T&Bave to be specified by
over-complicated logic expressions and then it is verydiffito apply their method to
realistic code.

Klein et al. verified a micro-kernel, seL4[12], where the kernel codesrsequen-
tially. Thus they used a sequential proof system to verifighod the kernel code. The
scheduling pattern of seL4 is similar to our pattern I, blyttrusted the code doing
context saving and loading, and left it unverified. Sincey tth@ not verify user processes
upon the kernel, they need not relate TCBs in the kernel vathad user processes.

Gargancet al. used a framework CVM_|6] to build verified kernels in the Vefis
project. CVM is a computational model for concurrent usecpsses, which interleave
through a micro-kernel. Starostin and Tsyban presentedaaicapproach[20] to rea-
son about context switch between user processes. The temtiégh code and proofs
are integrated in a framework for building verified kerneld/() [L1]. Their frame-
work keeps a global invariantyeak consistengyo relate TCBs in the kernel with user
processes outside the kernel. Since the kernel itself isese@l, their process schedul-
ing follows pattern |. The other two patterns cannot be \extifi

10 Conclusion

In this paper, we proposed a novel approach to verify coeotithread management
code, which allows multiple threads to modify their own #mecontrol blocks. The as-
sertions of the code and inference rules of the proof systerstenightforward and easy
to follow. Moreover, it can be easily extended to supporeokternel features (e.g., pre-
emptive scheduling, multi-core systems, synchroniza)iand to be practically applied
to realistic OS code.
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