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Abstract
Certified compositional compilation is important for establishing
end-to-end guarantees for certified systems consisting of separately
compiled modules. In this paper, we propose a framework consisting
of the key semantics components and verification steps that bridge
the gap between the compilers for sequential programs and for
(race-free) concurrent ones, so that the existing efforts on certified
sequential compilation can be reused for concurrent programs.
Contributions of the framework include an abstract formulation of
race-freedom in an interaction semantics, and a footprint-preserving
compositional simulation as the compilation correctness criterion.

1. Introduction
Address the problem, its importance and challenges. Certi-
fied compositional compilation has been considered an important
(though challenging) problem [[[by whom?]]]. A real-world pro-
gram usually consists of multiple modules which are compiled
independently. Correct compilation is expected to have composition-
ality, ensuring that separately compiled modules can work together
and preserve the semantics of the source program as a whole. That
is, we need not only that each single target module preserves the
semantics of its source, but also that the interactions between the
source modules are correctly reflected at the target. With the pres-
ence of concurrency, the problem becomes much harder since we
have to consider non-deterministic interleavings between threads as
well.

Advance over previous work. Although there are already many
works on certified separate compilation, most of them deal with
compilation for sequential programs. The first realistic certified
compiler, CompCert [1], establishes the semantic preservation
property for closed sequential programs. It can guarantee the
correctness of separate compilation when the sequential modules do
not interact with each other. To support general separate compilation,
Stewart et al. [4] developed Compositional CompCert, which allows
the modules to call each other’s external functions. Their approach
relies on non-preemptive semantics, where each module is interacted
with others only at certain program points specified in the module
code (i.e., at external calls only). It is unclear if their approach can
also be applied to interleaving concurrency, where a module may be
preempted by others at arbitrary and non-deterministically-chosen
program points.

On the other hand, existing works on certified compilation for
concurrent programs are usually not compositional (e.g., [2, 3],
which we will discuss in Sec. 9), thus cannot be applied to separate
compilation. As we will see in detail in Sec. 2, it is non-trivial to
build certified compositional compilation for preemptive concurrent
programs.

In this paper, we propose a framework consisting of the key
semantics components and verification steps that bridge the gap
between compilation for sequential programs and for (race-free)
concurrent ones. The key ingredient here is data-race-free (DRF)
assumption. We first formally prove the folklore theorem about the
equivalence between the preemptive and non-preemptive semantics
for race-free programs, so that it is possible to derive the semantics
preservation between preemptive programs from the semantics
preservation between non-preemptive ones when both source and
target programs are race-free. Then we prove DRF preservation in a
compositional style, using a notion of footprint-preservation, thus
DRF of target program could be derived from DRF of the source.
Finally, together with the semantics preservation proof between
non-preemptive programs, we are able to derive the semantics
preservation result between preemptive programs, assuming the
source is race free.

Contribution. Our work is built upon earlier work on Com-
pCert [1] and Compositional CompCert [4], but makes the following
new contributions:

• We design a footprint-preserving simulation as the correctness
of compilation for individual modules. As an extension of the
structured simulation in Compositional CompCert, our simula-
tion considers interactions at both external function calls and
synchronization points, thus is compositional with respect to
both module linking and non-preemptive parallelism. It also
requires that the footprints of the steps made by the source
and target modules be related, which is the key to derive DRF
preservation between the source and target whole programs in a
compositional style.

• To bridge the gap between our simulations in the non-preemptive
semantics and the DRF preservation we need for preemptive
programs, we formulate a novel notion of DRF in the non-
preemptive semantics, denoted as NPDRF. We show that a pro-
gram satisfies our NPDRF in the non-preemptive semantics if
and only if it satisfies the standard DRF notion in the interleaving
semantics. Then DRF preservation can be derived from NPDRF
preservation, which is ensured by footprint preservation in our
thread-local and module-local simulations.

• Putting all these together, our framework (see Fig. 3) is the
first to build certified compositional compilation for concurrent
programs from sequential compilation. It highlights the impor-
tance of DRF preservation for correct compilation. It also gives
the essential semantic requirments for the proof of equivalence
between preemptive and non-preemptive semantics.

• As a instantiation of our language independent compilation
framework, we extend the CompCert Clight with a set of
C11-like SC-atomic primitives as source language, and x86
assembly with lock prefix as target language. We successfully
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Figure 1. Proof structures of certified compilation.
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Figure 2. Simulation diagrams.

proved the CompCert compiler and the atomic primitives with
their implementations satisfying our correctness criteria. Thus
Clight modules compiled by CompCert linked with the atomic
primitives are proved to preserve the behavior of the (DRF)
source program as a whole.
[[[ Is it possible to bypass Compositional CompCert and
reuse CompCert proofs directly without major changes?
Are we able to claim it is a ”lightweighted” approach com-
pared with Compositional CompCert / CompCertTSO? ]]]

• In this instantiation, the only assumptions we made on source
programs is DRF. We provide various ways for proving DRF
property including a static race checker and a simplified sep-
aration logic that are sound with respect to data-race freedom.
With an automatic race checker, the entire proof of semantics
preservation could be generated with simply one click.

In the rest of this paper, we first analyze the challenge and give
an overview of our approach in Sec. 2. We give the basic technical
setting in Sec. 3, including the footprint-instrumented preemptive
semantics and the refinement definition. Sec. 4 presents the non-
preemptive semantics, which is the basis for both our new simulation
(Sec. 14) and the NPDRF definition (Sec. 7). We show the final
theorem in Sec. 8, and discuss related work in Sec. 9.

2. Informal Development
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Figure 3. Our framework
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3. Basic Technical Settings
3.1 The Abstract Language

(Prog) P,P ::= let ⇧ in f1 k . . . k f

n

(Entry) f 2 String (TID) t 2 N
(MdSet) ⇧,� ::= {(tl1,⇡1), . . . , (tlm,⇡

m

)}
(Lang) tl, sl ::= (Module, Core, InitCore, 7�!,AftExtn)

(Module) ⇡, � ::= . . .

(Core) , k ::= . . .

InitCore 2 Module ! Entry * list(Val) * Core

7�! 2 (Module ⇥ FList)⇥ (Core ⇥ State) !
{P((Msg ⇥ FtPrt)⇥ (Core ⇥ State)), abort}

AftExtn 2 Core ⇥ Value * Core

(BlockID) b 2 N
(State) �,⌃ 2 BlockID *fin N * Value

(U) l ::= (b, i) where i 2 N
(Value) v ::= l | . . .

(BSet) S, S 2 P(BlockID)

(FList) F,F 2 P!(BlockID)

(FSpace) FS,FS ::= F ::FS (co-inductive)
(FtPrt) �,� ::= (rs,ws) where rs,ws 2 P(U)

(Msg) ◆ ::= ⌧ | e | call(f,~v) | ret(v)
| entA | extA

(Event) e ::= . . .

(Config) �,� ::= (,�) | abort

locs(�)
def
= {(b, i) | b 2 dom(�) ^ i 2 dom(�(b))}

TSU def
= S ⇥ N

forward(�,�0) iff (dom(�) ✓ dom(�0))^
(locs(�0) \ Tdom(�)U ✓ locs(�))

�

rs
=== �

0 iff 8(b, i) 2 rs. ((b, i) 62 locs(�) [ locs(�0))_
((b, i) 2 locs(�) \ locs(�0)) ^ (�(b)(i) = �

0(b)(i))

� ✓ �

0 iff (�.rs ✓ �

0
.rs) ^ (�.ws ✓ �

0
.ws)

� [ �

0 def
= (�.rs [ �

0
.rs, �.ws [ �

0
.ws)

Figure 4. The Abstract Concurrent Language

Fig. 4 show the syntax of an abstract language for preemptive
concurrent programming, which can be instantiated to various
concrete and practical languages.

A program P consists of several threads running in parallel. Each
thread executes a module declared in ⇧, starting from an entry f.
Each module ⇡ may contain several entries. Different modules may
be written in different languages. We define a module language
tl as a tuple (Module,Core, InitCore, 7�!). Module describes the
syntax of the modules in this language. Following Compositional
CompCert [4], Core is the set of internal “core” states, which can
be instantiated to control continuations, instruction streams, register
files, etc.. Given a module ⇡ and an entry f, the function InitCore
returns the initial “core” state  (it is undefined if the entry is not
contained in the module). We assume that the entries in different
modules are different.

A memory state � is defined as a partial function of the type
U * Value, where U represents the type of locations. To simplify
the presentation, we specialize U to be the set of memory locations
in the CompCert memory model [? ], where memory is organized
as a collection of blocks. A memory location l is a pair (b, i) of

a block b and an offset i within this block. The purpose of this
memory model is to allow pointer arithmetic only within the same
block. Note that our framework actually does not rely on this special
instantiation of U. It can be applied to other memory models.

Besides, we assume that every thread is created with a free list
F (where F ✓ U), used to allocate memory for the thread. The free
lists of different threads are disjoint, ensuring that the allocation
operations made by different threads never race. To simplify the
presentation, we assume that free lists are infinite. In the case of
CompCert memory model, F should contain an infinite number of
blocks where each block contains all the possible offsets. Here P(·)
denotes the power set. [[[No need to assume the special form of
free lists? Besides, where do we *use* the assumption that F is
infinite?]]]

Footprint-based semantics. The operational semantics of a mod-
ule is defined using the labeled transitions (⇡, F ) ` (,�)

◆7�!
�

(0
,�

0) (or (⇡, F ) ` (,�)
◆7�!
�

abort if the step goes wrong). We
write � for the configuration (,�) or abort. Each step is labeled
with a message ◆ and a footprint �. The messages contain infor-
mation about the module-local steps. To simplify the presentation,
we only consider externally observable events e (such as outputs),
termination halt, and the starts and ends of atomic blocks entA
and extA. Any other step is silent, labeled with ⌧ (which is often
omitted in the following presentation). The messages define the
protocols of communications with the global (whole-program) se-
mantics (which will be described soon), so it is natural to require all
the module languages to use the same message formats. They allow
us to abstract away the syntax and semantics details of the module
languages, and focus on the interactions with other modules and
the external observer (the latter can observe e only). We can also
extend ◆ with messages of external function calls, and extend the
global semantics to handle them. But supporting external functions
is orthogonal to our work on certified compilation of concurrent
programs, so we do not present it here.

The footprint � is defined as a pair (rs,ws), which records the
memory locations that are read and written in this step. Recording
the footprint allows us to discuss races between threads in the
following sections. We write emp for the special footprint where
both the read and write sets are empty.

We require the language semantics to be well-defined (see wd
in Def. 1 below). First, a step may enlarge the memory domain but
cannot reduce it, and the additional memory should be allocated
from F . This requirement follows the CompCert memory model
where memory disposals do not really remove the locations from
the memory (they just become invalid). Second, the footprints
should be included in the domain of the memory, and the newly
allocated memory should be included in the write sets. Besides, the
memory out of the write sets should keep unchanged, as described
by �

dom(�)��.ws
========= �

0 (which is defined at the bottom of Fig. 4).
Finally, the memory updates at the write sets of a step only depends
on the read sets.

Definition 1 (Well-Defined Languages). wd(tl) iff for any ⇡, F ,
, �, ◆, 0, �0 and �, if (⇡, F ) ` (,�)

◆7�!
�

(0
,�

0), then all of the
following hold (some auxiliary definitions are in Fig. 5):

(1) forward(�,�0);
(2) LEffect(�,�0

, �, F )
(3) for any �1, LEqPre(�,�1, �, F ), then there exists �0

1 such that
(⇡, F ) ` (,�1)

◆7�!
�

(0
,�

0
1) and LEqPost(�0

,�

0
1, �, F ).

(4) for any �0 and �1, if

�0 =
[

{�00 | 900
,�

00
. (⇡, F ) ` (,�)

⌧7�!
�

00
(00

,�

00)} ,
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LEqPre(�1,�2, �, F )
def
= �1

�.rs
==== �2^

locs(�1) \ �.ws = locs(�2) \ �.ws^
dom(�1) \ F = dom(�2) \ F

LEqPost(�0
1,�

0
2, �, F )

def
= �

0
1

�.ws
==== �

0
2^

dom(�0
1) \ F = dom(�0

2) \ F

LEffect(�1,�2, �, F )
def
= �1

locs(�1)��.ws
========== �2^

locs(�1)� locs(�2) ✓ �.ws^
locs(�2)� locs(�1) ✓ �.ws^
dom(�2)� dom(�1) ✓ F

Figure 5. Auxiliary definitions for well-defined languages

LEqPre(�,�1, �0, F ) then

800
1 ,�

00
1 , ◆

00
1 , �

00
1 . (⇡, F ) ` (,�1)

◆

00
17�!

�

00
1

(00
1 ,�

00
1 ) =)

9�00
. (⇡, F ) ` (,�)

◆

00
17�!

�

00
1

(00
1 ,�

00)

(5) if ◆ = call(f,~v), then 8v0. 900
. AftExtn(0

, v

0) = 

00;
if ◆ = entA _ ◆ = extA, then 8v0. AftExtn(0

, v

0) = 

0.

Definition 2 (Deterministic Languages). det(tl) iff

8⇡, F,�,�1,�2, ◆1, ◆2, �1, �2.

(⇡, F ) ` �

◆17�!
�1

�1 ^ (⇡, F ) ` �

◆27�!
�2

�2 =)
�1 = �2 ^ ◆1 = ◆2 ^ �1 = �2

Below we write (⇡, F ) ` �

⌧7�!
�

+
�

0 for multiple silent-step
transitions, where � is the accumulation of the footprints generated.
(⇡, F ) ` �

⌧7�!
�

⇤
�

0 is for zero or multiple silent-step transitions,
where � is emp for the case of zero step. Similarly, for global
steps, we write W

⌧

=)
�

+
W

0 for multiple silent-step transitions.

Besides, we also write W =)+
W

0 for multiple steps that either
are silent or produce sw events. It must contain at least one silent
step. The meanings of W =)+ abort and W =)+ done are similar.
W

e

=) +
W

0 represents multiple steps with exactly one e event
produced (where other steps either are silent or produce sw events).

Other assumptions. In addition to the above requirements on
module languages, we also assume that any non-silent transition
(i.e., labeled with e, entA, extA or halt) does not access or update
the memory state, so its footprint is emp. [[[The assumption that
e-step’s footprint is empty looks strong...]]] Besides, the steps
producing entA and extA should be paired. Also, we do not allow
nested atomic blocks or outputs inside atomic blocks (i.e., the steps
producing e or entA never happen between an entA step and an
extA step).

Note that we do not enforce these assumptions, but our global
semantics (see below) would abort if no transitions of the module
can satisfy these assumptions. [[[Can it just “get stuck”?]]]

Global semantics. Fig. 7 defines a set of global semantics rules
to manipulate the preemption among threads. As shown in Fig. 6(a),
the global world W consists of the thread pool T , the ID t of
the thread currently being executed, a bit d indicating whether the
current thread is in an atomic block or not, and the memory state �.
The thread pool T contains the runtime module K of every thread,
which records the module language tl, the module code ⇡, the free
list F created for the thread, and the current “core” state . Since
we assume that there is no external function calls, each thread would

(World) W,W ::= ((⇧, T ), (t, d,�,FS))

(ThrdPool) T,T ::= {t1 ; K1, . . . , tn ; K

n

}
(RtMdStk) K,K ::= ✏ | ((tl,⇡, F ),) ::K

(AtomBit) d ::= 0 | 1
(GMsg) o ::= ⌧ | e | sw

(a) The Preemptive Model

initRtMd(⇧, f,~v, F )
def
= ((tl,⇡, F ), ),

if (tl,⇡) 2 ⇧ and tl.InitCore(⇡)(f)(~v) = 

initFList(�,FS) iff (dom(�)?FS) ^ disjoint(FS)

S \ F = ; S?FS
S?(F ::FS)

F?FS disjoint(FS)

disjoint(F ::FS)

(b) Initialization

Figure 6. The Runtime Global Models

execute exactly one module. In the following presentation, we may
not distinguish threads and modules.

Below we write (⇡, F ) ` �

⌧7�!
�

+
�

0 for multiple silent-step
transitions, where � is the accumulation of the footprints generated.
(⇡, F ) ` �

⌧7�!
�

⇤
�

0 is for zero or multiple silent-step transitions,
where � is emp for the case of zero step. Similarly, for global
steps, we write W

⌧

=)
�

+
W

0 for multiple silent-step transitions.

Besides, we also write W =)+
W

0 for multiple steps that either
are silent or produce sw events. It must contain at least one silent
step. The meanings of W =)+ abort and W =)+ done are similar.
W

e

=) +
W

0 represents multiple steps with exactly one e event
produced (where other steps either are silent or produce sw events).

Conventions. We usually write blackboard bold or capital letters
(e.g., P, W, k and ⌃) for the notations at the source level to
distinguish from the target-level ones (e.g., P , W ,  and �). The set
of modules at source is written as �, to distinguish from the target
⇧. Similarly, � is a source module while ⇡ is a target one.
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T = {1 ; K1, . . . , n ; K

n

} initFList(�, (F1 :: . . . ::Fn

::FS))
8i 2 {1, . . . , n}.K

i

= initRtMd(⇧, f

i

, ✏, F

i

) ::✏ t 2 {1, . . . , n}

(let ⇧ in f1 k . . . k f

n

,�)
load
==) ((⇧, T ), (t, 0,�,FS))

Load
t

0 2 dom(T )

((⇧, T ), (t, 0,�,FS)) sw
==)
emp

((⇧, T ), (t0, 0,�,FS))
Switch

T (t) = ((tl,⇡, F ),) ::K (⇡, F ) ` (,�)
⌧7�!
�

(0
,�

0)

T

0 = T{t ; ((tl,⇡, F ),0) ::K}

((⇧, T ), (t, d,�,FS)) ⌧

=)
�

((⇧, T

0), (t, d,�0
,FS))

⌧ -step

T (t) = ((tl,⇡, F ),) ::K (⇡, F ) ` (,�)
e7�!
emp

(0
,�)

T

0 = T{t ; ((tl,⇡, F ),0) ::K}

((⇧, T ), (t, 0,�,FS)) e

==)
emp

((⇧, T

0), (t, 0,�,FS))
Print

T (t) = ((tl,⇡, F ),) ::K (⇡, F ) ` (,�)
call(f,~v)7�!

emp

(0
,�)

FS = F1 ::FS0 initRtMd(⇧, f,~v, F1) = ((tl1,⇡1, F1),1) T

0 = {t ; ((tl1,⇡1, F1),1) :: ((tl,⇡, F ),0) ::K}

((⇧, T ), (t, 0,�,FS)) ⌧

==)
emp

((⇧, T

0), (t, 0,�,FS0))
EFCall

T (t) = ((tl1,⇡1, F1),1) :: ((tl,⇡, F ),) ::K (⇡1, F1) ` (1,�)
ret(v)7�!
emp

(0
1,�)

AftExtn(, v) = 

0
T

0 = T{t ; ((tl,⇡, F ),0) ::K}

((⇧, T ), (t, 0,�,FS)) ⌧

==)
emp

((⇧, T

0), (t, 0,�,FS))
EFRet

T (t) = ((tl,⇡, F ),) ::K (⇡, F ) ` (,�)
entA7�!
emp

(0
,�)

T

0 = T{t ; ((tl,⇡, F ),0) ::K}

((⇧, T ), (t, 0,�,FS)) ⌧

==)
emp

((⇧, T

0), (t, 1,�,FS))
EntAt

T (t) = ((tl,⇡, F ),) ::K (⇡, F ) ` (,�)
extA7�!
emp

(0
,�)

T

0 = T{t ; ((tl,⇡, F ),0) ::K}

((⇧, T ), (t, 1,�,FS)) ⌧

==)
emp

((⇧, T

0), (t, 0,�,FS))
ExtAt

T (t) = ((tl,⇡, F ),) ::✏

(⇡, F ) ` (,�)
ret(v)7�!
emp

(0
,�) t

0 2 dom(T\t)

((⇧, T ), (t, 0,�,FS)) sw
==)
emp

((⇧, T\t), (t0, 0,�,FS))
Term

T (t) = ((tl,⇡, F ),) ::✏

(⇡, F ) ` (,�)
ret(v)7�!
emp

(0
,�) dom(T ) = {t}

((⇧, T ), (t, 0,�,FS)) ⌧

==)
emp

done
Done

Figure 7. The Preemptive Global Semantics
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3.2 Event-Trace Refinement and Equivalence

ProgEtr((P,�),B) iff 9W. ((P,�)
load
==) W ) ^ Etr(W,B)

W =)+ abort
Etr(W, abort)

W

e

=)+
W

0 Etr(W 0
,B)

Etr(W, e ::B)

W =)+ done
Etr(W, done)

W =)+
W

0 Etr(W 0
, ✏)

Etr(W, ✏)

Figure 8. Definition of ProgEtr((P,�),B).

The correctness of compilation for concurrent programs is de-
fined as the event-trace refinement or equivalence relations between
source and target programs. An externally observable event trace
B is a finite or infinite sequence of external events e, and may end
with a termination marker done or an abortion marker abort. It is
co-inductively defined as follows.

(EvtTrace) B ::= done | abort | ✏ | e ::B (co-inductive)

Definition 3 (Event-Trace Refinement and Equivalence).
(P,⌃) w (P,�) iff

8B. ProgEtr((P,�),B) =) ProgEtr((P,⌃),B).
(P,⌃) ⇡ (P,�) iff

8B. ProgEtr((P,�),B) () ProgEtr((P,⌃),B).
P wge,' P iff

8⌃,�. (ge ✓ locs(⌃)) ^ (cl(dom(⌃),⌃) = dom(⌃)) ^
('{{dom(⌃)}} = dom(�)) ^ ('hhlocs(⌃)ii = locs(�)) ^
Inv(',⌃,�) =) (P,⌃) w (P,�)

4. The Non-Preemptive Semantics
A key step in our framework is to relate the source and target pre-
emptive programs to the corresponding non-preemptive programs.
In this section we define the global semantics of the non-preemptive
programs, where a thread interacts with other threads at only syn-
chronization points (i.e., when it enters and exits atomic blocks,
and outputs). The non-preemptive semantics is the basis for both
our new simulation (see Sec. 14) and our NPDRF definition (see
Sec. 7).

To distinguish from the preemptive parallelism, we write
let ⇧ in f1 | . . . | f

n

for the non-preemptive programs, denoted
by P̂ . As shown in Fig. 6(b), the non-preemptive global world c

W

is defined similarly to the preemptive world W , except that c
W

records the atomic bits of all the threads (denoted by ). Unlike the
preemptive semantics in Fig. 7(a) using the atomic bit d to know
whether or not it is allowed to switch, here we need to define
NPDRF later in Sec. 7.

The non-preemptive global steps are formulated as c
W :

o

=)
�

c
W

0

(and c
W :

⌧

=)
emp

abort for the aborting steps, and c
W :

⌧

=)
emp

done
for the terminating steps), defined in Fig. 7(b). The rules (Printnp),
(EntAtnp) and (ExtAtnp) execute one step of the current thread t, and
then non-deterministically switch to a thread t

0 (which could just
be t). The corresponding global steps produce the sw events (or the
external event e in the (Printnp) rule) which will be used to define
NPDRF later. Other rules are very similar to their counterparts in
the preemptive semantics in Fig. 7(a).

(NPProg) P̂ ::= let ⇧ in f1 | . . . | f
n

(NPWorld) c
W,

bW ::= ((⇧, T ), (t, ,�,FS))

(AtomBitSet) ::= {t1 ; d1, . . . , tn ; d

n

}

Figure 9. The Non-preemptive Runtime Global Models
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initFList(�, (F1 :: . . . ::Fn

::FS)) 8i 2 {1, . . . , n}.K
i

= initRtMd(⇧, f

i

, ✏, F

i

) ::✏
T = {t1 ; K1, . . . , tn ; K

n

} t 2 {t1, . . . , tn} = {t1 ; 0, . . . , t
n

; 0}

(let ⇧ in f1 | . . . | f
n

,�) :
load
==) ((⇧, T ), (t, ,�,FS))

Loadnp

T (t) = ((tl,⇡, F ),) ::K (⇡, F ) ` (,�)
⌧7�!
�

(0
,�

0)

T

0 = T{t ; ((tl,⇡, F ),0) ::K}

((⇧, T ), (t, ,�,FS)) : ⌧=)
�

((⇧, T

0), (t, ,�

0
,FS))

⌧ -stepnp

T (t) = ((tl,⇡, F ),) ::K (⇡, F ) ` (,�)
e7�!
emp

(0
,�)

(t) = 0 T

0 = T{t ; ((tl,⇡, F ),0) ::K} t

0 2 dom(T )

((⇧, T ), (t, ,�,FS)) : e

==)
emp

((⇧, T

0), (t0, ,�,FS))
Printnp

T (t) = ((tl,⇡, F ),) ::K (⇡, F ) ` (,�)
call(f,~v)7�!

emp

(0
,�) (t) = 0

FS = F1 ::FS0 initRtMd(⇧, f,~v, F1) = ((tl1,⇡1, F1),1) T

0 = {t ; ((tl1,⇡1, F1),1) :: ((tl,⇡, F ),0) ::K}

((⇧, T ), (t, ,�,FS)) : ⌧

==)
emp

((⇧, T

0), (t, ,�,FS0))
EFCallnp

T (t) = ((tl1,⇡1, F1),1) :: ((tl,⇡, F ),) ::K (⇡1, F1) ` (1,�)
ret(v)7�!
emp

(0
1,�) (t) = 0

AftExtn(, v) = 

0
T

0 = T{t ; ((tl,⇡, F ),0) ::K}

((⇧, T ), (t, ,�,FS)) : ⌧

==)
emp

((⇧, T

0), (t, ,�,FS))
EFRetnp

T (t) = ((tl,⇡, F ),) ::K (⇡, F ) ` (,�)
entA7�!
emp

(0
,�)

(t) = 0 T

0 = T{t ; ((tl,⇡, F ),0) ::K} t

0 2 dom(T )

((⇧, T ), (t, ,�,FS)) : sw
==)
emp

((⇧, T

0), (t0, {t ; 1},�,FS))
EntAtnp

T (t) = ((tl,⇡, F ),) ::K (⇡, F ) ` (,�)
extA7�!
emp

(0
,�)

(t) = 1 T

0 = T{t ; ((tl,⇡, F ),0) ::K} t

0 2 dom(T )

((⇧, T ), (t, ,�,FS)) : sw
==)
emp

((⇧, T

0), (t0, {t ; 0},�,FS))
ExtAtnp

T (t) = ((tl,⇡, F ),) ::✏ (t) = 0

(⇡, F ) ` (,�)
ret(v)7�!
emp

(0
,�) t

0 2 dom(T\t)

((⇧, T ), (t, ,�,FS)) : sw
==)
emp

((⇧, T\t), (t0, \t,�,FS))
Termnp

T (t) = ((tl,⇡, F ),) ::✏ (t) = 0

(⇡, F ) ` (,�)
ret(v)7�!
emp

(0
,�) dom(T ) = {t}

((⇧, T ), (t, ,�,FS)) : ⌧

==)
emp

done
Donenp

Figure 10. The Non-Preemptive Global Semantics
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5. The Footprint-Preserving Compositional
Simulation (with EFCalls)

6. The Footprint-Preserving Compositional
Simulation

In this section, we define a module-local simulation as the cor-
rectness obligation of each module’s compilation, which is com-
positional and preserves footprints, allowing us to derive a whole-
program simulation that preserves NPDRF. We will discuss com-
positionality in Sec. 6.2 and postpone the discussions of DRF and
NPDRF preservation to Sec. 7.

6.1 Definition of the Module-Local Simulation
As informally explained in Sec. 2, the simulation establishes a
consistency relation between executions of the source module �

and the target one ⇡. To achieve compositionality, our simulation
is also parameterized with rely/guarantee conditions, specifying
the interactions between the current module and its environment at
synchronization points. The consistency relation should be preserved
under the environment transitions allowed in the rely condition.

Before explaining the simulation definition in Def. 28, we
first define some key conditions in Fig. 19. Our simulation is
parameterized with µ, defined as follows.

µ

def
= (S, S, f) ,

where S, S 2 P(BlockID) and f 2 BlockID * BlockID

Here S and S specify the memory locations that are currently shared
or were once shared. Keeping track of S and S allows us to define the
fixed specifications of rely/guarantee conditions in our simulation.
The mapping f maps shared locations (including those once shared)
at the source level to shared locations at the target. We require it to
be an injective function, i.e., different source locations should be
mapped to different target locations.

We require µ be well-formed with respect to the current thread’s
free spaces F and F at the source and target levels. As defined in
Fig. 19, wf(µ,F, F ) says that the injective function f in µ maps
shared locations (in S) to shared locations (in S). In particular, a
location in F that is shared (i.e., that has been exported to other
threads) must be mapped to a shared location in F . Here f{{S}}
(defined at the bottom of the figure) returns the set of target locations
that are mapped from locations in S. f{{F \ S}} is defined similarly.

FPmatch(�, �, µ, F ) relates the footprints � and � at source
and target levels. It says, every location accessed at the target (i.e.,
in �) must either be from the current thread F , or correspond to a
shared location at the source. For the latter case, the location must
be accessed at the source (i.e., in �).

In our simulation µ may change after related steps at the source
and target levels. Fig. 19 defines how µ is allowed to evolve to
µ

0 under steps of the current thread (see EvolveG) and under the
environment steps (see EvolveR). First, as defined in Evolve, the
new µ

0 should be well-formed. The mapping f in µ0 should relate the
new states �0 and ⌃0 using Inv. Here Inv requires that the locations
related by f be contained in the states, and the contents of these
locations be also related (see

f

,!). Besides, S and S are evolved
to reachable closures in the new states �0 and ⌃0 respectively. We
define the closure function cl(S,⌃) at the bottom of the figure,
which is specialized to the CompCert memory model to simplify the
presentation. It returns all the locations reachable from S. Since the
CompCert memory model allows pointer arithmetics within blocks,
we know all the locations in a reachable block (i.e., a block in which
some location is reachable) are reachable. The last condition of
Evolve says that f in the original µ should be preserved in the new
µ

0 (here function subset is defined by viewing functions as special
relations). EvolveG for the current thread’s steps requires that the

HFPG(�, (µ,F)) iff FPG(�,F, µ.S)

LFPG(�, (µ,�, F )) iff FPG(�, F, µ.S) ^ FPmatch(µ,�, �)

FPmatch(µ,�, �) iff
(�.rs \ Tµ.SU ✓ µ.fhh�.rsii) ^ (�.ws \ Tµ.SU ✓ µ.fhh�.wsii)

FPG(�,F, S) iff blocks(�.rs [�.ws) ✓ F [ S

HG((�,⌃0), (µ,F)) iff G(�,⌃0
,F, µ.S)

LG((�,�0), (µ,�,⌃0
, F )) iff

G(�,�0
, F, µ.S) ^ FPmatch(µ,�, �) ^ Inv(µ.f,⌃0

,�

0)

G(�,⌃0
,F, S) iff FPG(�,F, S) ^ (S = cl(S,⌃0))

Rely(µ, (⌃,⌃0
,F), (�,�0

, F )) iff
R(⌃,⌃0

,F, µ.S) ^ R(�,�0
, F, µ.S) ^ Inv(µ.f,⌃0

,�

0)

R(⌃,⌃0
,F, S) iff

(⌃
TFU
==== ⌃0) ^ (S = cl(S,⌃0)) ^

forward(⌃,⌃0) ^ ((dom(⌃0)� dom(⌃)) \ F = ;)

Inv(f,⌃,�) iff
8b, n, b0, n0

. ((b, n) 2 locs(⌃)) ^ (fh(b, n)i = (b0, n0)) =)
((b0, n0) 2 locs(�)) ^ (⌃(b)(n)

f

,! �(b0)(n0))

v1
f

,! v2 iff
(v1 62 U) ^ (v1 = v2) _ v1 2 U ^ v2 2 U ^ fhv1i = v2

~v

f

,! ~v

0 iff 9v1, v01, . . . , vn, v0n.
~v = {v1, . . . , vn} ^ ~v

0 =
�
v

0
1, . . . , v

0
n

 
^ 8i. v

i

f

,! v

0
i

◆

f

,! ◆

0 iff
◆ = ◆

0 = e _ ◆ = ◆

0 = entA _ ◆ = ◆

0 = extA_
9f,~v,~v0. ◆ = call(f,~v) ^ ◆

0 = call(f,~v0) ^ ~v

f

,! ~v

0_
9v, v0. ◆ = ret(v) ^ ◆

0 = ret(v0) ^ v

f

,! v

0

Gargs(◆, S) iff
◆ = e _ ◆ = entA _ ◆ = extA_
9f,~v. ◆ = call(f,~v) ^ (8b, n. (b, n) 2 ~v =) b 2 S) _
9v, . ◆ = ret(v) ^ (8b, n. v = (b, n) =) b 2 S)

injective(f) iff
8b1, b2, b01, b02. b1 6= b2 ^ f(b1) = b

0
1 ^ f(b2) = b

0
2 =) b

0
1 6= b

0
2

f{{S}} def
= {b0 | 9b. (b 2 S) ^ f(b) = b

0}

fhli def
= (b0, n) , if l = (b, n) ^ f(b) = b

0

fhhwsii def
= {l0 | 9l. (l 2 ws) ^ fhli = l

0}

f |S
def
= {(b, f(b)) | b 2 (S \ dom(f))}

f2 � f1
def
= {(b1, b3) | 9b2. f1(b1) = b2 ^ f2(b2) = b3}

cl(S,⌃)
def
=

S
k

cl
k

(S,⌃) , where cl
k

(S,⌃) is inductively defined:
cl0(S,⌃)

def
= S

cl
k+1(S,⌃)

def
= {b0 | 9b, n, n0

. (b 2 cl
k

(S,⌃)) ^ ⌃(b)(n) = (b0, n0)}

Figure 11. Footprint Matching and Rely/Guarantee Conditions in
Our Simulation
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additional locations in µ

0
.f be allocated from the current thread’s F,

while EvolveR for the environment steps says the opposite.

Definition 4 (Module-Local Downward Simulation).
(sl, �) 4ge,' (tl,⇡) iff
dom(sl.InitCore(�)) = dom(tl.InitCore(⇡)) and
for any f, , k, �, ⌃, µ, F, F , S and S, if sl.InitCore(�)(f) = k,
tl.InitCore(⇡)(f) = , ge ✓ locs(⌃), dom(⌃) = S = cl(S,⌃),
dom(�) = S = '{{S}}, locs(�) = 'hhlocs(⌃)ii, Inv(',⌃,�),
F\S = F\S = ; and µ = (S, S,'|S), then there exists i 2 index

such that ((�,F), (k,⌃), •) 4(i,(emp,emp))
µ

((⇡, F ), (,�), •).
Here we define ((�,F), (k,⌃),�)4(i,(�0,�0))

µ

((⇡, F ), (,�),�)
(where the bit � is either � or •) as the largest relation such that
whenever ((�,F), (k,⌃),�) 4(i,(�0,�0))

µ

((⇡, F ), (,�),�), then
the following are true:

1. 8k0
,⌃0

,�. if � = �, (�,F) ` (k,⌃) ⌧7�!
�

(k0
,⌃0) and

HFPG(�0 [�, (µ,F)), then one of the following holds:
(a) there exists j such that

i. j < i, and
ii. ((�,F), (k0

,⌃0), �) 4(j,(�0[�,�0))
µ

((⇡, F ), (,�), �);
(b) or, there exist 0, �0, � and j such that

i. (⇡, F ) ` (,�)
⌧7�!
�

+(0
,�

0), and

ii. LFPG(�0 [ �, (µ,�0 [�, F )), and
iii. ((�,F), (k0

,⌃0), �) 4(j,(�0[�,�0[�))
µ

((⇡, F ), (0
,�

0), �);
2. 8k0

, ◆. if � = �, ◆ 6= ⌧ , (�,F) ` (k,⌃) ◆7�!
emp

(k0
,⌃) and

HG((�0,⌃), (µ,F)) and Gargs(◆, µ.S), then there exist 0, �,
◆

0, �0, 00 and j such that
(a) (⇡, F ) ` (,�)

⌧7�!
�

⇤(0
,�

0), and

(⇡, F ) ` (0
,�

0)
◆

0
7�!
emp

(00
,�

0), and

(b) LG((�0 [ �,�

0), (µ,�0,⌃, F )), and ◆

µ.f

,! ◆

0, and
(c) ((�,F), (k0

,⌃), •) 4(j,(emp,emp))
µ

((⇡, F ), (00
,�

0), •)
or ◆ = ret(v);

3. 8�0
,⌃0

, v

s

, k0
, v

t

, if � = • and AftExtn(k, v
s

) = k0 and

v

s

µ.f

,! v

t

Rely(µ, (⌃,⌃0
,F), (�,�0

, F )),
then there exists 0, j such that
(a) AftExtn(, v

t

) = 

0, and
(b) ((�,F), (k0

,⌃0), �) 4(j,(emp,emp))
µ

((⇡, F ), (0
,�

0), �).

The simulation (sl, �) 4 (tl,⇡) relates the executions of the
source module � and the target module ⇡. We first use the languages’
InitCore functions (see Fig. 4) to initialize the “core” states k and
. We assume their executions start from the same initial memory
states at the source and target levels, and the whole memory is shared
between the current thread and its environment. We define µ with
the injective function idS, which is the identity function on S. That
is, dom(idS) = S and 8l 2 S. idS(l) = l.

The index i and the history footprints (�0, �0) are introduced to
ensure footprint preservation. Since compilations may reorder in-
structions, it may be more natural to relate the footprints of multiple
source steps to the corresponding target footprints. Our simulation
allows one to accumulate the footprints using the history footprints
(�0, �0), and check FPmatch (the footprint matching condition, de-
fined in Fig. 19) later. Note that one may choose to check FPmatch
at every source step. Whether to accumulate footprints or check
FPmatch depends on the compilation applications, and we leave
the choices to verifiers. However, for infinite executions, it is not
allowed to continuously accumulate the footprints and never check
FPmatch. Therefore our simulation is parameterized with a metric
i from a well-founded set index. The metric should decrease at

steps that accumulate the footprints and could be reset at steps that
check FPmatch.

We also introduce a bit � to indicate the synchronization points
(i.e., the program points when the control may switch to the
environment). It takes two values • and �. Initially it is •, indicating
a possible switch that allows the environment threads to make steps
before the current thread starts. Internal ⌧ -steps of the current thread
keeps � to be � (see condition 1 in Def. 28). When the current thread
makes a transition labeled with e, entA or extA (see condition 2 in
Def. 28), we set � from � to •. The environment can interfere with
the current thread when � is • (see condition 3 in Def. 28). After
the environment interference, � should be reset to �.

Our simulation definition follows the diagram in Fig. 2(b). Every
source ⌧ -step should correspond to zero-or-multiple target ⌧ -steps
(see condition 1 in Def. 28). One may check FPmatch for footprints
accumulated till the current steps and reset the metric (see 1(a)),
or choose to continue accumulating the footprints and decrease the
metric (see 1(b)). To simplify the presentation, [[[??]]] the footprints
should be accumulated when the source step correspond to zero
target steps.

At switch points (see condition 2 in Def. 28), we check FPmatch
for the accumulated footprints and reset the metric. We also evolve
µ to µ

0, which satisfies EvolveG (defined in Fig. 19).
We require the simulation relation is preserved after the envi-

ronment interference (see condition 3 in Def. 28). The environment
steps should not change the current thread’s local memory. The con-
dition 3(a) disallow the environment threads to update locations in
the current thread’s F (or F at the target level) except in the shared
parts S (or corresponds to S). Here == is defined at the bottom of
Fig. 4. After the environment step, µ is evolved to µ

0 satisfying
EvolveR (defined in Fig. 19).
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6.2 Compositionality and the Non-Preemptive Global
Simulation

Definition 5 (Whole-Program Downward Simulation).
P̂ 4ge,' P̂ iff
there exist f1, . . . , fn, � = {(sl1, �1), . . . , (sl

m

, �

m

)} and ⇧ =
{(tl1,⇡1), . . . , (tlm,⇡

m

)}, such that P̂ = let � in f1 | . . . | f
m

,
P̂ = let ⇧ in f1 | . . . | f

m

,
8i 2 {1, . . . ,m}. dom(sl

i

.InitCore(�
i

)) = dom(tl
i

.InitCore(⇡
i

))
and
for any ⌃, �, µ, bW, if ge ✓ locs(⌃), dom(⌃) = S ✓ dom('),
cl(S,⌃) = S, locs(�) = 'hhlocs(⌃)ii, Inv(',⌃,�), µ = (S,'{{S}},'|S),
and (P̂,⌃) : load

==) bW,
then there exists cW , i 2 index such that

(P̂ ,�) :
load
==) c

W and bW 4(i,(emp,emp))
µ

c
W .

Here we define bW 4(i,(�0,�0))
µ

c
W as the largest relation such

that whenever bW 4(i,(�0,�0))
µ

c
W , then the following are true:

1. bW.t = c
W.t, and bW. = c

W. , and wf(µ,⌃);
2. 8 bW0

,�. if bW :
⌧

=)
�

bW0, then one of the following holds:
(a) there exists j such that

i. j < i, and
ii. bW0 4(j,(�0[�,�0))

µ

c
W ;

(b) or, there exist cW 0, � and j such that
i. cW :

⌧

=)
�

+c
W

0, and

ii. FPmatch(�0 [�, �0 [ �, µ, ((cW.T )(cW.t)).head.F ),
and

iii. bW0 4(j,(�0[�,�0[�))
µ

c
W

0;
3. 8T0

,

0
,⌃0

, o. if o 6= ⌧ and 9t0. bW :
o

=)
emp

(T0
, t

0
,

0
,⌃0),

then there exist c
W

0, �, µ

0, T

0, �

0 and j such that for any
t

0 2 dom(T0), we have
(a) c

W :
⌧

=)
�

⇤c
W

0, and c
W

0 :
o

=)
emp

(T 0
, t

0
,

0
,�

0), and

(b) FPmatch(�0, �0 [ �, µ, ((cW.T )(cW.t)).head.F ), and
(c) (T0

, t

0
,

0
,⌃0) 4(j,(emp,emp))

µ

0 (T 0
, t

0
,

0
,�

0);

4. if bW :
⌧

=)
emp

done, then there exist cW 0 and � such that

(a) c
W :

⌧

=)
�

⇤c
W

0, and c
W

0 :
⌧

=)
emp

done, and

(b) FPmatch(�0, �0 [ �, µ, ((cW.T )(cW.t)).head.F ).

Lemma 6 (Compositionality, 4 in Fig. 3).
For any f1, . . . , fn, ge1, . . . , ge

m

, ge, ',
� = {(sl1, �1), . . . , (sl

m

, �

m

)}, ⇧ = {(tl1,⇡1), . . . , (tlm,⇡

m

)}
such that for any i 2 {1, . . . ,m} we have wd(sl

i

) and wd(tl
i

), if

8i 2 {1, . . . ,m}. (sl
i

, �

i

) 4gei,' (tl
i

,⇡

i

) ,

and ge =
S

i

ge
i

, then

let � in f1 | . . . | f
n

4ge,' let ⇧ in f1 | . . . | f
n

.

6.3 Flip of the Non-Preemptive Global Simulation
Definition 7 (Whole-Program Upward Simulation).
P̂ 6ge,' P̂ iff
there exist f1, . . . , fn, � = {(sl1, �1), . . . , (sl

m

, �

m

)} and ⇧ =
{(tl1,⇡1), . . . , (tlm,⇡

m

)}, such that P̂ = let � in f1 | . . . | f
m

,
P̂ = let ⇧ in f1 | . . . | f

m

,
8i 2 {1, . . . ,m}. dom(sl

i

.InitCore(�
i

)) = dom(tl
i

.InitCore(⇡
i

))
and

for any ⌃, �, µ, bW, if ge ✓ locs(⌃), dom(⌃) = S ✓
dom('), cl(S,⌃) = S, locs(�) = 'hhlocs(⌃)ii, Inv(',⌃,�),

µ = (S,'{{S}},'|S), and (P̂ ,�) :
load
==) c

W ,
then there exists bW, i 2 index such that

(P̂,⌃) : load
==) bW and bW 4(i,(emp,emp))

µ

bW.
Here we define c

W 6(i,(�0,�0))
µ

bW as the largest relation such
that whenever cW 6(i,(�0,�0))

µ

bW, then the following are true:

1. bW.t = c
W.t, and bW. = c

W. , and wf(µ,⌃);
2. 8cW 0

, �. if cW :
⌧

=)
�

c
W

0, then one of the following holds:

(a) there exists j such that
i. j < i, and

ii. cW 0 6(j,(�0[�,�0))
µ

bW;
(b) there exist bW0, � and j such that

i. bW :
⌧

=)
�

+ bW0, and

ii. FPmatch(�0 [�, �0 [ �, µ, ((cW.T )(cW.t)).head.F ),
and

iii. cW 0 6(j,(�0[�,�0[�))
µ

bW0;
3. 8T 0

,

0
,�

0
, o. if o 6= ⌧ and 9t0. c

W :
o

=)
emp

(T 0
, t

0
,

0
,�

0),

then there exist bW0, �, µ0, T0, ⌃0 and j such that for any
t

0 2 dom(T 0), we have
(a) bW :

⌧

=)
�

⇤ bW0, and bW0 :
o

=)
emp

(T0
, t

0
,

0
,⌃0), and

(b) FPmatch(�0 [�, �0, µ, ((cW.T )(cW.t)).head.F ), and
(c) (T 0

, t

0
,

0
,�

0) 6(j,(emp,emp))
µ

0 (T0
, t

0
,

0
,⌃0);

4. if cW :
⌧

=)
emp

done, then there exist bW0 and � such that

(a) bW :
⌧

=)
�

⇤ bW0, and bW0 :
⌧

=)
emp

done, and

(b) FPmatch(�0 [�, �0, µ, ((cW.T )(cW.t)).head.F ).
5. ¬(cW :

⌧

=)
emp

abort) and ¬( bW :
⌧

=)
emp

abort).

Lemma 8 (Flip, 3 in Fig. 3).
For any f1, . . . , fn, ge, ', � = {(sl1, �1), . . . , (sl

m

, �

m

)},
⇧ = {(tl1,⇡1), . . . , (tlm,⇡

m

)}, if 8i. det(tl
i

) and Safe(let � in f1 |
. . . | f

m

, ge)

let � in f1 | . . . | f
m

4ge,' let ⇧ in f1 | . . . | f
m

,

then

let ⇧ in f1 | . . . | f
m

6ge,' let � in f1 | . . . | f
m

.
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7. Data-Race-Freedom
�1 ^ �2 iff (�1.ws \ (�2.rs [ �2.ws) = ;) ^

(�1.rs \ �2.ws = ;)
(�1, d1) ^ (�2, d2) iff (�1 ^ �2) _ (d1 = d2 = 1)

DRF(P,�) iff ¬((P,�) Z=) Race)
DRF(P, ge) iff

8⌃. (ge ✓ locs(⌃)) ^ (cl(dom(⌃),⌃) = dom(⌃)) =)
DRF(P,⌃)

DRF(P̂ ,�) iff ¬((P̂ ,�) : Z=) Race)

Lemma 9 (NPDRF Preservation, 7 in Fig. 3).
For any P̂, P̂ , ge, ', ⌃ and �, if P̂ 6ge,' P̂, ge ✓ locs(⌃),
cl(dom(⌃),⌃) = dom(⌃), '{{dom(⌃)}} = dom(�), 'hhlocs(⌃)ii =
locs(�), Inv(',⌃,�) and NPDRF(P̂,⌃), then NPDRF(P̂ ,�).

Lemma 10 (Equivalence between DRF and NPDRF, 6 and 8 in
Fig. 3).
For any f1, . . . , fm, �, ⇧ = {(tl1,⇡1), . . . , (tlm,⇡

m

)} such that
8i. wd(tl

i

),

DRF(let ⇧ in f1 k . . . k f

m

,�) ()
NPDRF(let ⇧ in f1 | . . . | f

m

,�) .

Lemma 11 (Equivalence between Preemptive and Non-Preemptive
Programs, 1 and 2 in Fig. 3).
For any ⇧, f1, . . . , fm, �, if DRF(let ⇧ in f1 k . . . k f

m

,�), then

(let ⇧ in f1 | . . . | f
m

,�) ⇡ (let ⇧ in f1 k . . . k f

m

,�) .
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(P,�)
load
==) W W Z=)+

Race

(P,�) Z=) Race

W

o

=)
�

W

0

W Z=) W

0 Progress

t1 6= t2 predict(W, t1, (�1, d1)) predict(W, t2, (�2, d2)) ¬((�1, d1) ^ (�2, d2))

W Z=) Race

Race

W = ((⇧, T ), ( , 0,�,FS)) T (t) = ((tl,⇡, F ),) ::K (⇡, F ) ` (,�)
⌧7�!
�

(0
,�

0)

predict(W, t, (�, 0))
Predict0

W = ((⇧, T ), ( , 0,�,FS)) T (t) = ((tl,⇡, F ),) ::K (⇡, F ) ` (,�)
entA7�!
emp

(0
,�) (⇡, F ) ` (0

,�)
⌧7�!
�

⇤(00
,�

00)

predict(W, t, (�, 1))
Predict1

(a) Preemptive Semantics

(P̂ ,�) :
load
==) c

W t1 6= t2 NPpredict(cW, t1, (�1, d1)) NPpredict(cW, t2, (�2, d2)) ¬((�1, d1) ^ (�2, d2))

(P̂ ,�) : Z=) Race

(P̂ ,�) :
load
==) c

W

c
W : Z=)+

Race

(P̂ ,�) : Z=) Race

c
W :

o

=)
�

c
W

0

c
W : Z=) c

W

0
Progressnp

c
W :

o

==)
emp

c
W

0
o 6= ⌧ t1 6= t2 NPpredict(cW 0

, t1, (�1, d1)) NPpredict(cW 0
, t2, (�2, d2)) ¬((�1, d1) ^ (�2, d2))

c
W : Z=) Race

Racenp

c
W = ((⇧, T ), ( , ,�,FS)) ((⇧, T ), (t, ,�,FS)) : ⌧=)

�

⇤((⇧, T

0), (t, ,�

0
,FS)) (t) = d

NPpredict(cW, t, (�, d))
Predictnp

(b) Non-Preemptive Semantics

Figure 12. Predictive Semantics for Defining Race
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8. The Final Theorem
SeqComp ::= (CodeT,GE,')

CodeT 2 Module * Module
GE 2 Module * P(U)

ge 2 P(U)

' 2 BlockID * BlockID ⇥ N where injective(')

Theorem 12 (Final Theorem).
For any SeqComp1, . . . , SeqComp

m

, sl1, . . . , sl
m

, tl1, . . . , tl
m

such that for any i 2 {1, . . . ,m} we have wd(sl
i

), wd(tl
i

) and
det(tl

i

), if

8i 2 {1, . . . ,m}.Correct(SeqComp
i

, sl
i

, tl
i

) ,

then

GCorrect((SeqComp1, sl1, tl1), . . . , (SeqComp
m

, sl
m

, tl
m

)).

Definition 13 (Sequential Compiler Correctness).
Correct(SeqComp, sl, tl) iff

8�,⇡, ge. SeqComp.CodeT(�) = ⇡ ^ SeqComp.GE(�) = ge =) (sl, �) 4ge,SeqComp.' (tl,⇡)

Definition 14 (Concurrent Compiler Correctness).
GCorrect((SeqComp1, sl1, tl1), . . . , (SeqComp

m

, sl
m

, tl
m

)) iff
for any f1, . . . , fn, � = {(sl1, �1), . . . , (sl

m

, �

m

)},
⇧ = {(tl1,⇡1), . . . , (tlm,⇡

m

)}, for any ge1, . . . , ge
m

, ge, ', if

1. 8i 2 {1, . . . ,m}. SeqComp
i

.CodeT(�
i

) = ⇡

i

,
2. 8i 2 {1, . . . ,m}. SeqComp

i

.GE(�
i

) = ge
i

, ge =
S

i

ge
i

,
8i 2 {1, . . . ,m}. SeqComp

i

.' = ',
3. DRF(let � in f1 k . . . k f

n

, ge), and
Safe(let � in f1 k . . . k f

n

, ge),
4. 8i 2 {1, . . . ,m}. ReachClose(sl

i

, �

i

, ge
i

),

then

let � in f1 k . . . k f

n

wge,' let ⇧ in f1 k . . . k f

n

.

Definition 15 (Safety). Safe(W) iff ¬9tr.Etr(W, tr ::abort).
Safe(P,⌃) iff 8W. ((P,⌃) load

==) W) =) Safe(W).
Safe(let � in f1 k . . . k f

m

, ge) iff

8⌃. (ge ✓ locs(⌃)) ^ (cl(dom(⌃),⌃) = dom(⌃)) =)
Safe(let � in f1 k . . . k f

m

,⌃) .

Definition 16. ReachClose(sl, �, ge) iff
8k, f,F, S. if

1. sl.InitCore(�, f) = k,
2. blocks(ge) ✓ S,
3. S \ F = ;,

then RC((�, k), (F, S)).
Here RC is defined as the largest relation such that whenever

RC((�, k), (F, S)), then the following holds:
8k0

,⌃,⌃0
, ◆,�. if S = cl(S,⌃) ✓ dom(⌃) and

(�,F) ` (k,⌃) ◆7�!
�

(k0
,⌃0), then G(�,⌃0

,F, S) and Gargs(◆, S)
and RC((�, k0), (F, S)).
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Without EFCalls.

Definition 17 (Version I). ReachClose1(sl, �, ge) iff
8k, f,⌃,F, ac. if

1. sl.InitCore(�, f) = k,
2. ge ✓ TacU, ac = cl(ac,⌃) ✓ dom(⌃),
3. dom(⌃) \ F = ;,

then RC1((�,F), (k,⌃), ac).
Here RC1 is defined as the largest relation such that whenever

RC1((�,F), (k,⌃), ac), both the following are true:

1. 8k0
,⌃0

,�, ac0. if (�,F) ` (k,⌃) ⌧7�!
�

(k0
,⌃0) and

ac0 = ac [ (dom(⌃0)� dom(⌃)), then
(a) cl(ac0,⌃0) = ac0, and
(b) � ✓ Tac0U, and
(c) RC1((�,F), (k0

,⌃0), ac0);
2. 8k0

, ◆,⌃0
, ac0. if (�,F) ` (k,⌃) ◆7�!

emp

(k0
,⌃), ◆ 6= ⌧ and

ac ✓ ac0 = cl(ac0,⌃0) ✓ dom(⌃0), then
RC1((�,F), (k0

,⌃0), ac0).

Definition 18 (Version II). ReachClose2(sl, �, ge) iff
8k, f,⌃,F, ac. if

1. sl.InitCore(�, f) = k,
2. ge ✓ TacU, ac ✓ dom(⌃), cl(dom(⌃),⌃) = dom(⌃),
3. dom(⌃) \ F = ;,

then RC2((�,F), (k,⌃), ac).
Here RC2 is defined as the largest relation such that whenever

RC2((�,F), (k,⌃), ac), both the following are true:

1. 8k0
,⌃0

,�, ac0. if (�,F) ` (k,⌃) ⌧7�!
�

(k0
,⌃0) and

ac0 = cl(ac [ (dom(⌃0)� dom(⌃)),⌃0), then
(a) � ✓ Tac0U, and
(b) RC2((�,F), (k0

,⌃0), ac0);
2. 8k0

, ◆. if (�,F) ` (k,⌃) ◆7�!
emp

(k0
,⌃) and ◆ 6= ⌧ , then

(a) cl(dom(⌃),⌃) = dom(⌃), and
(b) 8⌃0

, ac0. if forward(⌃,⌃0), cl(dom(⌃0),⌃0) = dom(⌃0)
and ac0 = cl(ac,⌃0), then RC2((�,F), (k0

,⌃0), ac0).

Definition 19 (Version III). ReachClose3(sl, �, ge) iff
8k, f,F, ac. if

1. sl.InitCore(�, f) = k,
2. ge ✓ TacU,
3. ac \ F = ;,

then RC3((�,F), k, ac).
Here RC3 is defined as the largest relation such that

8�,F, k, ac. if RC3((�,F), k, ac), then
8k0

,⌃,⌃0
, ◆,�, ac0. if ac ✓ dom(⌃), cl(ac,⌃) = ac,

(�,F) ` (k,⌃) ◆7�!
�

(k0
,⌃0) and

ac0 = ac [ (dom(⌃0)� dom(⌃)), then

1. � ✓ Tac0U, and
2. cl(ac0,⌃0) = ac0, and
3. RC3((�,F), k0

, ac0).

Definition 20 (ReachClose in CompComp).
ReachClose(sl, �, ge) iff
8k, f,⌃,F. if

1. sl.InitCore(�, f) = k,
2. dom(⌃) \ F = ;,

then RC((�,F), (k,⌃), ;).

Here RC is defined as the largest relation such that whenever
RC((�,F), (k,⌃), ac), both the following are true:

1. 8k0
,⌃0

,�, ac0. if (�,F) ` (k,⌃) ⌧7�!
�

(k0
,⌃0) and

ac0 = cl(cl(getBlocks(ge)[ac,⌃)[(dom(⌃0)�dom(⌃)),⌃0),
then
(a) � ✓ Tcl(getBlocks(ge) [ ac,⌃)U, and
(b) RC((�,F), (k0

,⌃0), ac0);
2. 8k0

, ◆,⌃0
. if (�,F) ` (k,⌃) ◆7�!

emp

(k0
,⌃) and ◆ 6= ⌧ , then

RC((�,F), (k0
,⌃0), ac).

Definition 21 (Nucular in CompComp).
Nucular(sl, �, ge) iff
8k, f,⌃,F. if

1. sl.InitCore(�, f) = k,
2. ge ✓ locs(⌃), cl(dom(⌃),⌃) = dom(⌃),
3. dom(⌃) \ F = ;,

then nucular((�,F), (k,⌃)).
Here nucular is defined as the largest relation such that whenever

nucular((�,F), (k,⌃)), both the following are true:

1. 8k0
,⌃0

,�. if (�,F) ` (k,⌃) ⌧7�!
�

(k0
,⌃0), then

nucular((�,F), (k0
,⌃0));

2. 8k0
, ◆. if (�,F) ` (k,⌃) ◆7�!

emp

(k0
,⌃) and ◆ 6= ⌧ , then

(a) cl(dom(⌃),⌃) = dom(⌃), and
(b) 8⌃0

. if forward(⌃,⌃0) and cl(dom(⌃0),⌃0) = dom(⌃0),
then nucular((�,F), (k0

,⌃0)).

9. Related Work and Conclusions
9.1 Compare with CompCertX
The CompCertX compiler is developed to support separate compila-
tion of OS code. Taking the advantage of their push/pull memory
model and log-based CPU-local machine, they are able to sup-
port parallel composition without major modification to CompCert.
[[[HOW?]]]

But there are also limitations caused by the push/pull memory
model:
• Program have to use push/pull primitives to synchronize between

CPUs. E.g., given a properly implemented lock l, to get access
to a shared variable x, the program has to be like the left one.
Where in our approach, there is no need to introduce push/pull
primitives, as shown on the right.

lock(l);
pull(&x);
write(&x, 1);
push(&x);
unlock(l);

lock(l);
write(&x, 1);
unlock(l);

[[[Why are we able to be simpler? No local copy?]]]
What’s more, the push/pull primitives introduce redundant func-
tion calls, causing significant latency on their spin-lock imple-
mentations. For performance they remoded push/pull primitives
during ”pretty-printing” phase, which is not verified. This is not
an issue in our approach since we do not introduce unnecessary
”null calls”.

• There is no way to share a memory block unless it corresponds
to some global identifier. Since the push/pull primitives are
instantiated as CompCert external calls, their arguments must be
blocks corresponding to some global identifier, as required by
CompCert. Thus, for example, they are not able to implement a
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general malloc function and share malloced memory amoung
CPUs, e.g. appending to a shared linked list. In their approach,
appending new node to a linked list is implemented by modifying
a pre-allocated memory spaces (such as a globally declared
array).
Of course they could not allow two CPUs simultaneously ac-
cessing different localtions in the same block, or simultaneously
reading the same location, since they push/pull by block and
each block is accessable by only one CPU.
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(HMod) � ::= {f1 ; (~x1,C1), . . . , f
k

; (~x
k

,C
k

)}

(HStmt) C ::= skip | E := E | x := f(~E) | return(E)
| C;C | if (B) C else C | while (B){C}
| sc store(E,E) | x := sc load(E)

(HExpr) E ::= n | x | ⇤E | &E | E+ E | E� E | E⇥ E

(HBExp) B ::= true | false | E = E | E  E | not B | B and B

(HCore) k ::= C | k1; k2 | . . .

InitCore(�)(f)(~v)
def
= (~x := ~v;C) if �(f) = (~x,C)

(�,F) ` (x := f(~v),⌃)
call(f,~v)7�!

emp

(x := f(~v),⌃) if f 62 dom(�)

(�,F) ` (x := f(~v),⌃)
recv(v0)99999! (x := v

0
,⌃) if f 62 dom(�)

(�,F) ` (return(v0),⌃)
ret(v0)7�!
emp

(skip,⌃)

(�,F) ` (x := sc load(src); k) call(sc load,src)7�!
emp

(x := sc load(src); k)

(�,F) ` (sc store(dst, v); k) call(sc store,dst::v)7�!
emp

(sc store(dst, v); k)

Figure 13. Source language: Clight + SC atomics

10. The Source Language: Clight + SC Atomics
The whole program let �

S
{(langSC, �SC)} in f1(~v1) k . . . k

f

n

(~v
n

): Here � is the collection of source modules written by the
application programmers.

sc store and sc load: In the views of the application program-
mers, they are primitives that would generate external function calls.

To define the semantics of sc-primitives, we introduce a built-
in module (langSC, �SC), where langSC is defined in Fig.14. On
a sc-primitive call, it first generate an entA event, then performs
the corresponding memory operation; before returning the resulting
value, it generate an extA event. The entA and extA events guaran-
tees that the memory operation is exclusive to the environment.

(SCSyntax) C ::= Ent sc op | sc op | Ext sc ret | sc ret | END

(SCMod) �sc ::= {sc load ; C1, sc store ; C2}

(SCCore) ksc ::= C

(SCOp) sc op ::= load(src) | store(dst, v)

(SCVar) src, dst, v ::= . . .

(SCRet) sc ret ::= load ret(v) | store ret

InitCoreSC(�)(f)(~v)
def
=

8
<

:

(Ent (load(src))) if f = sc load ^ ~v = src ::nil

(Ent (store(dst, v0))) if f = sc store ^ ~v = dst ::v0 ::nil

(�sc,F) ` (Ent sc op,⌃)
entA7�! (Ent sc op,⌃)

(�sc,F) ` (Ent sc op,⌃)
recv()999! (sc op,⌃)

sc op = load(src) � = ({src}, ;)
⌃(src) = v sc ret = load ret(v)

(�sc,F) ` (sc op,⌃)
⌧7�!
�

(Ext sc ret,⌃)
Load

sc op = store(dst, v) � = (;, {dst})
⌃0 = ⌃{src ; v} sc ret = store ret

(�sc,F) ` (sc op,⌃)
⌧7�!
�

(Ext sc ret,⌃0)
Store

(�sc,F) ` (Ext sc ret,⌃)
extA7�! (Ext sc ret,⌃)

(�sc,F) ` (Ext sc ret,⌃)
recv()999! (sc ret,⌃)

sc ret = store ret ^ ~v = nil or
sc ret = load ret(v0) ^ ~v = v

0 ::nil

(�sc,F) ` (sc ret,⌃)
ret(~v)7�!
emp

(END,⌃)
Returen

langSC
def
= (SCMod, SCCore, InitCoreSC, 7�!, 9!)

Figure 14. SC atomic lang
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(LMod) ⇡ ::= {f1 ; C1, . . . , f
k

; C

k

}

(LCode) C ::= ✏ | c ::C

(LInstr) c ::= mov r

d

, r

s

| mov r
d

, v | mov l, r

s

| add r

d

, r

s

| . . .

| call f | ret
| lock xchg l r

s

| lock xadd l r

s

| lock cmpxchg l r

s

(DynInstr) c̃ ::= ENTER AT | EXIT AT

(DynCode) C̃ ::= ✏ | c :: C̃ | c̃ :: C̃

(Register) r ::= r0 | . . . | r31

(RegFile) R 2 Register ! Value

(LCore)  ::= (C̃, R)

InitCore(⇡)(f)(~v)
def
= (⇡(f), R) where R =????

f 62 dom(⇡) R

0 =????

(⇡, F ) ` (((call f) :: C̃, R),�)
call(f)7�!
emp

(((call f) :: C̃, R

0),�)

R

0 =????

(⇡, F ) ` ((ret :: C̃, R),�)
ret7�!
emp

((C̃, R

0),�)

(⇡, F ) ` ((lock mov a1 a2) :: C̃)
⌧7�!
emp

(ENTER AT :: (mov a1 a2) ::EXIT AT :: C̃)

(⇡, F ) ` ((ENTER AT ::C,R),�)
entA7�!
emp

((C,R),�)

(⇡, F ) ` ((EXIT AT ::C,R),�)
extA7�!
emp

((C,R),�)

f 62 dom(�) R

0 =????

(⇡, F ) ` (((call f) ::C,R),⌃)
recv99! ((C,R

0),⌃)

Figure 15. Pseudo-x86 Assembly

11. The Target Language: x86 Assembly
The target programs written in the x86 assembly language are simply
“printed” from programs in the “pseudo-x86” language defined
in Fig. 15. The “pseudo-x86” language is an instantiation of our
abstract language.

Pseudo-x86. As in the source language, ENTER AT and EXIT AT
are used only as dynamic instructiions.

Note that sc store and sc load are external function calls in the
source code written by the application programmers. So they will be
compiled to “call sc store” and “call sc load” at the pseudo-x86
level.

Recall that we have a built-in module for sc-primitives. Here we
implement them in pseudo-x86:

sc store :

mov ecx [esp+ 8]

mov edx [esp+ 4]

lock xchg [edx] ecx

ret

sc load :

xor eax eax

mov edx [esp+ 4]

lock xadd [edx] eax

ret

sc cas :
mov eax [esp+ 8]

mov eax [eax]

mov edx [esp+ 4]

mov ecx [esp+ 12]

lock cmpxchg [edx] ecx

sete al

ret

Printing from pseudo-x86 to x86. Identical transformation.
[[[Have to study x86 code for function calls.]]]
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Figure 16. example

11.1 Why the (4)th condition was required?
The condition is required in proving Lemma 10, in particular, the
”(” direction, i.e. DRF(P̂ ,�) =) DRF(P,�). This could be
proved by proving

((P,�) Z=) Race) =)
⇣
(P̂ ,�) : Z=) Race

⌘
.

Intuitively, the (4)th condition is necessary because we need to
construct a race-condition under non-preemptive execution, based
on some interleaving execution. In this case, we need all footprint
generated during a interleaving execution is predictable from some
state in a non-preemptive execution.

We illustrate this by an example.
By definition of Z=) Race, we know

9W. (P,�)
load
==) W ^W Z=)+

Race

Consider the special case shown in Fig.16

W = (T, 0, t2,�)

(T, 0, t2,�)
⌧

=)
�

(T1, 0, t2,�1)

(T1, 0, t1,�1)
⌧

=)
�1

(T2, 0, t1,�2)

(T2, 0, t1,�2) Z=) Race

where race is caused by

(T2(t1),�2)
⌧7�!
�2

(1,�2) ^ (T2(t2),�2)
⌧7�!
�3

(2,�3)

and ¬�2 ^ �3.
By definition we are able to construct the corresponding non-

preemptive state Ŵ = (T,~0, t2,�) such that

(P̂ ,�)
load
==) Ŵ :

⌧

=)
�

(T1,~0, t2,�1)

, and we have to show (T1,~0, t2,�1) : Z=) Race, since we are not
able to reach �2 in a non-preemptive execution.

We consider two cases:

Case 1: (T1, 0, t2,�1) Z=) Race

we could derive (T1,~0, t2,�1) : Z=) Race trivially
Case 2: ¬(T1, 0, t2,�1) Z=) Race

It’s trivial to see

NPpredict((T1,~0, t2,�1), t1, (�1 [ �2, 0))

The difficulty is to predict (�3, 0) for thread t2 under (T1,~0, t2,�1).
Now we could apply the (4)th condition and ¬(T1, 0, t2,�1) Z=)

Race to prove NPpredict((T1,~0, t2,�1), t2, (�3, 0))

Let �0 =
S
{�0 | 90

,�

0
. (T (t2),�1)

⌧7�!
�

0
(0

,�

0)}.
By ¬(T1, 0, t2,�1) Z=) Race, we know
�1

�0.rs
==== �2 and locs(�1) \ �0.ws = locs(�2) \ �0.ws.

Then by the (4)th condition, we have
900

,�

00
. (T (t2),�1)

⌧7�!
�3

(00
,�

00)

[[[Is the condition necessary?]]]

We are able to give a language satisfying (1)-(3) but does not
satisfy (4), and in this case DRF(P̂ ,�) =) DRF(P,�) is not
provable.

Assume we have this kind of statement ”C1 |̂C2”, meaning we
non-deterministically choose one statement that is able to progress,
and execute.

Assume we have 2 global variables x and y that are initialized
to 0.

(C1,�)
⌧7�!
�

(skip,�0)

(C1 |̂C2,�)
⌧7�!
�

(skip,�0)
Nondet 1

(C2,�)
⌧7�!
�

(skip,�0)

(C1 |̂C2,�)
⌧7�!
�

(skip,�0)
Nondet 2

[[E]]
�

= true ^ (C,�)
⌧7�!
�

(skip,�0)

(with(E)do(C),�)
⌧7�!
�

(skip,�0)
Withdo

t1 : t2 :

with(x == 1)do y := 1 |̂ nop; x := 1;

with(y == 1)do y := 2 |̂ nop; with(y == 1)do y := 3 |̂ nop;

Figure 17. Wierd counter example

All non-preemptive executions are data-race free (according to
our definition of NPDRF), but the preemptive execution would
result in data race.

And it is obvious that this language satisfied condition (1)-(3)
while failed to satisfy condition (4).
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11.2 Alternative Well-Defined Definition

�1?�2
def
= locs(�1) \ locs(�2) = ;

�1 · �2
def
=

⇢
{(b,�1(b) ] �2(b)) | b 2 dom(�1) [ dom(�2)} ,�1?�2

Undefined , otherwise

Definition 22 (Well-Defined Languages (Alternative)). wd0(tl) iff
for any ⇡, F , , �,

(1) [Forward]
[[[Is this necessary? where was it used?]]]

80
,�

0
, ◆, �., if (⇡, F ) ` (,�)

◆7�!
�

(0
,�

0) then forward(�,�0)

and dom(�0)� dom(�) ✓ F

(2) [Alloc/Free is captured by write set, contents of location outside
write set stay unchanged]
[[[Could some part of this property derived from frame?]]]
[[[Why do we need locs captured by �?]]]

80
,�

0
, ◆, �. if (⇡, F ) ` (,�)

◆7�!
�

(0
,�

0) then

(locs(�0)� locs(�)) [ (locs(�)� locs(�0)) ✓ �.ws and
�

locs(�)��.ws
========= �

0

(I.e. 9�
x

,�

y

,�

0
y

. � = �

x

· �
y

^ �

0 = �

x

· �0
y

and locs(�
x

) =
locs(�)� �.ws)

(3) [Frame Property (instrumented with footprint)]
8�1,�2,

0
,�

0
, ◆, �. if �1?�2, � = �1 · �2, and (⇡, F ) `

(,�)
◆7�!
�

(0
,�

0), then either (⇡, F ) ` (,�1)
◆7�!
�

abort

or 9�0
1.�

0 = �

0
1 · �2 ^ (⇡, F ) ` (,�1)

◆7�!
�

(0
,�

0
1)

(4) [Safety Monotonicity (instrumented with footprint and freelist)]
[[[It is different from the original safety monotonicity]]]
[[[for deterministic allocation, we need �2 orthogonal to freelist]]]
8�1,�2. if � = �1 · �2, (dom(�2)� dom(�1)) \ F = ; then
8◆, �,0

,�

0
1. (⇡, F ) ` (,�1)

◆7�!
�

(0
,�

0
1)

=) (⇡, F ) ` (,�1 · �2)
◆7�!
�

(0
,�

0
1 · �2)

(5) [Footprint captures enough resource for safe execution]
8�1,�2, �0. if ¬

⇣
(⇡, F ) ` (,�) 7�! abort

⌘
,

�0 =
S
{� | 90

,�

0
, ◆. (⇡, F ) ` (,�)

◆7�!
�

(0
,�

0)},
� = �1 · �2, and locs(�2) \ �0 = ;, then
¬
⇣
(⇡, F ) ` (,�1) 7�! abort

⌘

(x) if ◆ = call(f,~v), then 8v0. 900
. AftExtn(0

, v

0) = 

00;
if ◆ = entA _ ◆ = extA, then 8v0. AftExtn(0

, v

0) = 

0.

The alternative condition wd0 is not able to imply the original wd.
But might be sufficient for the proof of DRF equivalence lemmas.

Recall the condition needed for DRF equivalence proof:

Definition 23 (Condition A0). A0(tl) if and only if
8�0,⇡1, F1,1, ◆1, �1,�1,

0
1,⇡2, F2,2. if

1. (⇡1, F1) ` (1,�0)
◆17�!
�1

(0
1,�1), and

2. ¬
⇣
(⇡2, F2) ` (2,�0) 7�! abort

⌘
and

8◆01,0
2,�

0
1, �

0
1.

(⇡2, F2) ` (2,�0)
◆

0
17�!

�

0
1

(0
2,�

0
1) =) �

0
1 ^ �1

3. F1 \ F2 = ;

then 8◆2,0
2, �2.

9�2. (⇡2, F2) ` (2,�0)
◆27�!
�2

(0
2,�2)

, 9�0
2. (⇡2, F2) ` (2,�1)

◆27�!
�2

(0
2,�

0
2).

Lemma 24. 8tl.wd0(tl) =) A0(tl).

Proof. By assumption (1) of A0 and condition (2) of wd0(tl), we
have �0

locs(�0)��1.ws
=========== �1.

I.e. 9�
x

,�

y

,�

0
y

. �0 = �

x

·�
y

and �1 = �

x

·�0
y

and locs(�
y

) ✓
�1.ws and locs(�0

y

) ✓ �1.ws and dom(�
y

) = dom(�
x

)

Let �0 =
S
{�0 | 90

,�

0
, ◆

0
. (⇡2, F2) ` (2,�0)

◆

0
7�!
�

(0
,�

0)}
By assumption (2) of A0,

locs(�
y

) \ �0 = locs(�0
y

) \ �0 ✓ �1.ws \ �0 = ;
By wd0 (5), and assumption 2. of A0(tl),

¬
⇣
(⇡2, F2) ` (2,�x

) 7�! abort
⌘

Now we prove one direction (() of the goal, i.e.
9�0

2. (⇡2, F2) ` (2,�1)
◆27�!
�2

(0
2,�

0
2)

) 9�2. (⇡2, F2) ` (2,�0)
◆27�!
�2

(0
2,�2).

The assumption could be rewritten as
(⇡2, F2) ` (2,�x

· �0
y

)
◆27�!
�2

(0
2,�

0
2).

By frame property, exists �0
x

, (⇡2, F2) ` (2,�x

)
◆27�!
�2

(0
2,�

0
x

)

By safety monotonicity, (2) of wd0(tl), and assumption 3. of A0,
(⇡2, F2) ` (2,�x

· �
y

)
◆27�!
�2

(0
2,�

0
x

· �
y

), i.e. 9�2. (⇡2, F2) `

(2,�0)
◆27�!
�2

(0
2,�2)
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11.3 Problems with wd’
wd

0 suffers from these problems
• Prpoerties of language and footprints are mixed up. Condition

(1), (3), (4) are intended to describe properties of language, while
condition (2), (5) describes properties of �.

• Condition (3) requires the footprint of two steps are the same,
while it is not intended to describe property of �.

• Similarly, condition (4) requires footprint and resulting state of
the two steps are the same. It is different from the original safety
monotonicity and it is not clear why such property is necessary.

• While we have read set and write set in footprint, no condition
describes property of read set

To deal with these problems, I made the following modifications
on wd

0:
• reorganized the wd

0 definition, define properties of languages
and footprints separately.

• removed requirement of same �, instead we require read set and
write set should be subset of locs(�) [ TF � dom(�)U

• removed requirements on result states in condition (4), now (4)
is almost the same as original safety monotonicity

• restored condition (3) of wd, describes that the execution actually
depends on memory contents in read set and memory domain in
write set.

The resulting ”well-defined” property are defined separately as
”well-defined language” and ”well-defined footprint”:

LEqPre(�1,�2, �, F )
def
= �1

�.rs
==== �2^

(locs(�1)4 locs(�2)) \ �.ws = ;^
(dom(�1)4 dom(�2)) \ F = ;

LEqPost(�0
1,�

0
2, �, F )

def
= �

0
1

�.ws
==== �

0
2^

(dom(�0
1)4 dom(�0

2)) \ F = ;

LEffect(�1,�2, �, F )
def
= �1

locs(�1)��.ws
========== �2^

(locs(�1)4 locs(�2)) ✓ �.ws^
(dom(�1)4 dom(�2)) ✓ F

Definition 25 (wd-lang(tl)). For any language tl, wd-lang(tl) iff
for any ⇡, F,,�,

1. Forward
80

,�

0
, ◆, �., if (⇡, F ) ` (,�)

◆7�!
�

(0
,�

0) then forward(�,�0)

2. Frame Property
8�1,�2,

0
,�

0
, ◆, �. if �1?�2, � = �1 · �2, and (⇡, F ) `

(,�)
◆7�!
�

(0
,�

0), then either (⇡, F ) ` (,�1) 7�! abort

or 9�0
1, �

0
.�

0 = �

0
1 · �2 ^ (⇡, F ) ` (,�1)

◆7�!
�

0
(0

,�

0
1)

3. Safety Monotonicity
[[[This condition is redundant for DRF equivalence proof]]]
8�1,�2. if � = �1 · �2, (dom(�2)� dom(�1)) \ F = ; then
¬
⇣
(⇡, F ) ` (,�1) 7�! abort

⌘
=) ¬

⇣
(⇡, F ) ` (,�) 7�! abort

⌘

x. if ◆ = call(f,~v), then 8v0. 900
. AftExtn(0

, v

0) = 

00;
if ◆ = entA _ ◆ = extA, then 8v0. AftExtn(0

, v

0) = 

0.

Definition 26 (wd-fp(tl)). For any language tl, wd-fp(tl) iff for
any ⇡, F,,

1. Footprint should not exceed locs(�) plus available location in
F

8�1, ◆, �,
0
,�

0
1. if (⇡, F ) ` (,�1)

◆7�!
�

(0
,�

0
1) then

�.ws [ �.rs ✓ locs(�1) [ TF � dom(�1)U
2. Footprint captures enough resource for safe execution

8�1,�2, �0. if ¬
⇣
(⇡, F ) ` (,�1) 7�! abort

⌘
, and

�0 =
S
{� | 90

,�

0
1, ◆. (⇡, F ) ` (,�1)

◆7�!
�

(0
,�

0
1)}, and

LEqPre(�1,�2, �0, F ), then ¬
⇣
(⇡, F ) ` (,�2) 7�! abort

⌘

3. Footprint captures dependency of one step
8�1,�2, �. if LEqPre(�1,�2, �, F ) then for any 0

, ◆,�

0
1, (⇡, F ) `

(,�1)
◆7�!
�

(0
,�

0
1) implies

9�0
2. (⇡, F ) ` (,�2)

◆7�!
�

(0
,�

0
2) and LEqPost(�0

1,�
0
2, �, F )

4. Write set captures the effect of one step
8�1, ◆, �,

0
,�

0
1. if

(⇡, F ) ` (,�1)
◆7�!
�

(0
,�

0
1) then

LEffect(�1,�
0
1, �, F )

These definitiond are not sufficient to prove condition A0.
Counter example:

�.rs ✓ locs(�)

( , ) ` (nop,�)
⌧7�!
�

(skip,�)
Bad footprint

Fix1 change wd-fp condition 1 to

1. Footprint has this form of ”frame property”
8�,�1,�2. if �1?�2, � = �1 · �2, then either
(⇡, F ) ` (,�1) 7�! abort or
S
{� | 90

,�

0
, ◆. (⇡, F ) ` (,�)

◆7�!
�

(0
,�

0
1)}

✓
S
{� | 90

,�

0
1, ◆. (⇡, F ) ` (,�1)

◆7�!
�

(0
,�

0
1)}

Then wd-lang condition 2 and 3 are redundant.
The fixed version implies the original wd (Definition 1).

Fix2 add condition

5. Without resource captured by footprint would abort
8�,�1,�2, ◆, �,

0
,�

0
. if �1?�2, � = �1 · �2, (⇡, F ) `

(,�)
◆7�!
�

(0
,�

0), and � \ locs(�2) 6= ; then
(⇡, F ) ` (,�1) 7�! abort

The fixed version implies the original wd (Definition 1).

12. The Footprint-Preserving Compositional
Simulation

12.1 Definition of the Module-Local Simulation

µ

def
= (S, S, f) ,

where S, S 2 P(BlockID) and f 2 BlockID * BlockID ⇥ N

Definition 27 (Module-Local Downward Simulation).
(sl, �) 4ge,' (tl,⇡) iff
dom(sl.InitCore(�)) = dom(tl.InitCore(⇡)) and
for any f, , k, �, ⌃, µ, F, F and S, if sl.InitCore(�)(f) = k,
tl.InitCore(⇡)(f) = , ge ✓ locs(⌃), dom(⌃) = S ✓ dom('),
cl(S,⌃) = S, locs(�) = 'hhlocs(⌃)ii, Inv(',⌃,�), F \ S = F \
'{{S}} = ; and µ = (S,'{{S}},'|S), then there exists i 2 index

such that ((�,F), (k,⌃), •) 4(i,(emp,emp))
µ

((⇡, F ), (,�), •).
Here we define ((�,F), (k,⌃),�)4(i,(�0,�0))

µ

((⇡, F ), (,�),�)
(where the bit � is either � or •) as the largest relation such that
whenever ((�,F), (k,⌃),�) 4(i,(�0,�0))

µ

((⇡, F ), (,�),�), then
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wf(µ,⌃) iff
injective(µ.f,⌃) ^ (µ.S ✓ dom(µ.f)) ^ (µ.f{{µ.S}} ✓ µ.S)

wf(µ,⌃,F, F ) iff
wf(µ,⌃) ^ (µ.f{{µ.S \ F}} ✓ F ) ^ (µ.f{{µ.S� F}} \ F = ;)

FPmatch(�, �, µ, F ) iff
(�.rs [ �.ws ✓ TF [ µ.f{{µ.S}}U) ^
(�.rs \ Tµ.f{{µ.S}}U ✓ µ.fhh�.rsii) ^
(�.ws \ Tµ.f{{µ.S}}U ✓ µ.fhh�.wsii)

EvolveG(µ, µ0
,⌃0

,�

0
,F, F ) iff

Evolve(µ, µ0
,⌃0

,�

0
,F, F ) ^ (µ0

.S� µ.S ✓ F)

EvolveR(µ, µ0
,⌃0

,�

0
,F, F ) iff

Evolve(µ, µ0
,⌃0

,�

0
,F, F ) ^ ((µ0

.S� µ.S) \ F = ;)

Evolve(µ, µ0
,⌃0

,�

0
,F, F ) iff

wf(µ0
,⌃0

,F, F ) ^ (µ.f ✓ µ

0
.f) ^ Inv(µ0

.f,⌃0
,�

0) ^
µ

0
.S = cl(µ.S,⌃0) ✓ dom(⌃0) ^ µ

0
.S = cl(µ.S,�0) ✓ dom(�0)

Inv(f,⌃,�) iff
8b, n, b0, n0

. ((b, n) 2 locs(⌃)) ^ (fh(b, n)i = (b0, n0)) =)
((b0, n0) 2 locs(�)) ^ (⌃(b)(n)

f

,! �(b0)(n0))

v1
f

,! v2 iff
(v1 62 U) ^ (v1 = v2) _ v1 2 U ^ v2 2 U ^ fhv2i = v2

injective(f,⌃) iff
8l1, l2, l01, l02. l1 6= l2 ^ l1 2 locs(⌃) ^ l2 2 locs(⌃) ^
fhl1i = l

0
1 ^ fhl2i = l

0
2 =) l

0
1 6= l

0
2

f{{S}} def
= {b0 | 9b. (b 2 S) ^ f(b) = (b0, )}

fhli def
= (b0, n+ n

0) , if l = (b, n) ^ f(b) = (b0, n0)

fhhwsii def
= {l0 | 9l. (l 2 ws) ^ fhli = l

0}

f |S
def
= {(b, f(b)) | b 2 (S \ dom(f))}

cl(S,⌃)
def
=

S
k

cl
k

(S,⌃) , where cl
k

(S,⌃) is inductively defined:
cl0(S,⌃)

def
= S

cl
k+1(S,⌃)

def
= {b0 | 9b, n, n0

. (b 2 cl
k

(S,⌃)) ^ ⌃(b)(n) = (b0, n0)}

Figure 18. Footprint Matching and Evolution of µ in Our Simula-
tion

wf(µ,⌃,F, F ), Inv(µ.f,⌃,�), µ.S = cl(µ.S,⌃) ✓ dom(⌃),
µ.S = cl(µ.S,�) ✓ dom(�) and the following are true:

1. 8k0
,⌃0

,�. if � = � and (�,F) ` (k,⌃) ⌧7�!
�

(k0
,⌃0), then

one of the following holds:
(a) there exists j such that

i. j < i, and
ii. ((�,F), (k0

,⌃0), �) 4(j,(�0[�,�0))
µ

((⇡, F ), (,�), �);
(b) or, there exist 0, �0, � and j such that

i. (⇡, F ) ` (,�)
⌧7�!
�

+(0
,�

0), and

ii. FPmatch(�0 [�, �0 [ �, µ, F ), and
iii. ((�,F), (k0

,⌃0), �) 4(j,(�0[�,�0[�))
µ

((⇡, F ), (0
,�

0), �);
2. 8k0

, ◆. if � = �, ◆ 6= ⌧ and (�,F) ` (k,⌃) ◆7�!
emp

(k0
,⌃),

then there exist 0, �, �0, 0, µ0 and j such that
(a) (⇡, F ) ` (,�)

⌧7�!
�

⇤(0
,�

0), and

(⇡, F ) ` (0
,�

0)
◆7�!

emp

(00
,�

0), and

(b) �0.rs [�0.ws ✓ TF [ µ.SU and

(c) FPmatch(�0, �0 [ �, µ, F ), and
(d) EvolveG(µ, µ0

,⌃,�0
,F, F ), and

(e) ((�,F), (k0
,⌃), •) 4(j,(emp,emp))

µ

0 ((⇡, F ), (00
,�

0), •)
or ◆ = halt;

3. 8�0
,⌃0

, µ

0, if � = • and

(a) ⌃
TF�µ.SU
======= ⌃0, �

TFU�µ.fhhlocs(⌃)\Tµ.SUii
================== �

0,
forward(⌃,⌃0), forward(�,�0), and

(b) EvolveR(µ, µ0
,⌃0

,�

0
,F, F ),

then there exists j such that
((�,F), (k,⌃0), �) 4(j,(emp,emp))

µ

0 ((⇡, F ), (,�0), �).
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13. The Footprint-Preserving Compositional
Simulation (with EFCalls)

14. The Footprint-Preserving Compositional
Simulation

In this section, we define a module-local simulation as the cor-
rectness obligation of each module’s compilation, which is com-
positional and preserves footprints, allowing us to derive a whole-
program simulation that preserves NPDRF. We will discuss com-
positionality in Sec. 6.2 and postpone the discussions of DRF and
NPDRF preservation to Sec. 7.

14.1 Definition of the Module-Local Simulation
As informally explained in Sec. 2, the simulation establishes a
consistency relation between executions of the source module �

and the target one ⇡. To achieve compositionality, our simulation
is also parameterized with rely/guarantee conditions, specifying
the interactions between the current module and its environment at
synchronization points. The consistency relation should be preserved
under the environment transitions allowed in the rely condition.

Before explaining the simulation definition in Def. 28, we
first define some key conditions in Fig. 19. Our simulation is
parameterized with µ, defined as follows.

µ

def
= (S, S, f) ,

where S, S 2 P(BlockID) and f 2 BlockID * BlockID

Here S and S specify the memory locations that are currently shared
or were once shared. Keeping track of S and S allows us to define the
fixed specifications of rely/guarantee conditions in our simulation.
The mapping f maps shared locations (including those once shared)
at the source level to shared locations at the target. We require it to
be an injective function, i.e., different source locations should be
mapped to different target locations.

We require µ be well-formed with respect to the current thread’s
free spaces F and F at the source and target levels. As defined in
Fig. 19, wf(µ,F, F ) says that the injective function f in µ maps
shared locations (in S) to shared locations (in S). In particular, a
location in F that is shared (i.e., that has been exported to other
threads) must be mapped to a shared location in F . Here f{{S}}
(defined at the bottom of the figure) returns the set of target locations
that are mapped from locations in S. f{{F \ S}} is defined similarly.

FPmatch(�, �, µ, F ) relates the footprints � and � at source
and target levels. It says, every location accessed at the target (i.e.,
in �) must either be from the current thread F , or correspond to a
shared location at the source. For the latter case, the location must
be accessed at the source (i.e., in �).

In our simulation µ may change after related steps at the source
and target levels. Fig. 19 defines how µ is allowed to evolve to
µ

0 under steps of the current thread (see EvolveG) and under the
environment steps (see EvolveR). First, as defined in Evolve, the
new µ

0 should be well-formed. The mapping f in µ0 should relate the
new states �0 and ⌃0 using Inv. Here Inv requires that the locations
related by f be contained in the states, and the contents of these
locations be also related (see

f

,!). Besides, S and S are evolved
to reachable closures in the new states �0 and ⌃0 respectively. We
define the closure function cl(S,⌃) at the bottom of the figure,
which is specialized to the CompCert memory model to simplify the
presentation. It returns all the locations reachable from S. Since the
CompCert memory model allows pointer arithmetics within blocks,
we know all the locations in a reachable block (i.e., a block in which
some location is reachable) are reachable. The last condition of
Evolve says that f in the original µ should be preserved in the new
µ

0 (here function subset is defined by viewing functions as special
relations). EvolveG for the current thread’s steps requires that the

HFPG(�, (µ,F)) iff FPG(�,F, µ.S)

LFPG(�, (µ,�, F )) iff FPG(�, F, µ.S) ^ FPmatch(µ,�, �)

FPmatch(µ,�, �) iff
(�.rs \ Tµ.SU ✓ µ.fhh�.rsii) ^ (�.ws \ Tµ.SU ✓ µ.fhh�.wsii)

FPG(�,F, S) iff blocks(�.rs [�.ws) ✓ F [ S

HG((�,⌃0), (µ,F)) iff G(�,⌃0
,F, µ.S)

LG((�,�0), (µ,�,⌃0
, F )) iff

G(�,�0
, F, µ.S) ^ FPmatch(µ,�, �) ^ Inv(µ.f,⌃0

,�

0)

G(�,⌃0
,F, S) iff FPG(�,F, S) ^ (S = cl(S,⌃0))

Rely(µ, (⌃,⌃0
,F), (�,�0

, F )) iff
R(⌃,⌃0

,F, µ.S) ^ R(�,�0
, F, µ.S) ^ Inv(µ.f,⌃0

,�

0)

R(⌃,⌃0
,F, S) iff

(⌃
TFU
==== ⌃0) ^ (S = cl(S,⌃0)) ^

forward(⌃,⌃0) ^ ((dom(⌃0)� dom(⌃)) \ F = ;)

Inv(f,⌃,�) iff
8b, n, b0, n0

. ((b, n) 2 locs(⌃)) ^ (fh(b, n)i = (b0, n0)) =)
((b0, n0) 2 locs(�)) ^ (⌃(b)(n)

f

,! �(b0)(n0))

v1
f

,! v2 iff
(v1 62 U) ^ (v1 = v2) _ v1 2 U ^ v2 2 U ^ fhv1i = v2

~v

f

,! ~v

0 iff 9v1, v01, . . . , vn, v0n.
~v = {v1, . . . , vn} ^ ~v

0 =
�
v

0
1, . . . , v

0
n

 
^ 8i. v

i

f

,! v

0
i

◆

f

,! ◆

0 iff
◆ = ◆

0 = e _ ◆ = ◆

0 = entA _ ◆ = ◆

0 = extA_
9f,~v,~v0. ◆ = call(f,~v) ^ ◆

0 = call(f,~v0) ^ ~v

f

,! ~v

0_
9v, v0. ◆ = ret(v) ^ ◆

0 = ret(v0) ^ v

f

,! v

0

Gargs(◆, S) iff
◆ = e _ ◆ = entA _ ◆ = extA_
9f,~v. ◆ = call(f,~v) ^ (8b, n. (b, n) 2 ~v =) b 2 S) _
9v, . ◆ = ret(v) ^ (8b, n. v = (b, n) =) b 2 S)

injective(f) iff
8b1, b2, b01, b02. b1 6= b2 ^ f(b1) = b

0
1 ^ f(b2) = b

0
2 =) b

0
1 6= b

0
2

f{{S}} def
= {b0 | 9b. (b 2 S) ^ f(b) = b

0}

fhli def
= (b0, n) , if l = (b, n) ^ f(b) = b

0

fhhwsii def
= {l0 | 9l. (l 2 ws) ^ fhli = l

0}

f |S
def
= {(b, f(b)) | b 2 (S \ dom(f))}

f2 � f1
def
= {(b1, b3) | 9b2. f1(b1) = b2 ^ f2(b2) = b3}

cl(S,⌃)
def
=

S
k

cl
k

(S,⌃) , where cl
k

(S,⌃) is inductively defined:
cl0(S,⌃)

def
= S

cl
k+1(S,⌃)

def
= {b0 | 9b, n, n0

. (b 2 cl
k

(S,⌃)) ^ ⌃(b)(n) = (b0, n0)}

Figure 19. Footprint Matching and Rely/Guarantee Conditions in
Our Simulation
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additional locations in µ

0
.f be allocated from the current thread’s F,

while EvolveR for the environment steps says the opposite.

Definition 28 (Module-Local Downward Simulation).
(sl, �) 4ge,' (tl,⇡) iff
dom(sl.InitCore(�)) = dom(tl.InitCore(⇡)) and
for any f, , k, �, ⌃, µ, F, F , S and S, if sl.InitCore(�)(f) = k,
tl.InitCore(⇡)(f) = , ge ✓ locs(⌃), dom(⌃) = S = cl(S,⌃),
dom(�) = S = '{{S}}, locs(�) = 'hhlocs(⌃)ii, Inv(',⌃,�),
F\S = F\S = ; and µ = (S, S,'|S), then there exists i 2 index

such that ((�,F), (k,⌃), •) 4(i,(emp,emp))
µ

((⇡, F ), (,�), •).
Here we define ((�,F), (k,⌃),�)4(i,(�0,�0))

µ

((⇡, F ), (,�),�)
(where the bit � is either � or •) as the largest relation such that
whenever ((�,F), (k,⌃),�) 4(i,(�0,�0))

µ

((⇡, F ), (,�),�), then
the following are true:

1. 8k0
,⌃0

,�. if � = �, (�,F) ` (k,⌃) ⌧7�!
�

(k0
,⌃0) and

HFPG(�0 [�, (µ,F)), then one of the following holds:
(a) there exists j such that

i. j < i, and
ii. ((�,F), (k0

,⌃0), �) 4(j,(�0[�,�0))
µ

((⇡, F ), (,�), �);
(b) or, there exist 0, �0, � and j such that

i. (⇡, F ) ` (,�)
⌧7�!
�

+(0
,�

0), and

ii. LFPG(�0 [ �, (µ,�0 [�, F )), and
iii. ((�,F), (k0

,⌃0), �) 4(j,(�0[�,�0[�))
µ

((⇡, F ), (0
,�

0), �);
2. 8k0

, ◆. if � = �, ◆ 6= ⌧ , (�,F) ` (k,⌃) ◆7�!
emp

(k0
,⌃) and

HG((�0,⌃), (µ,F)) and Gargs(◆, µ.S), then there exist 0, �,
◆

0, �0, 00 and j such that
(a) (⇡, F ) ` (,�)

⌧7�!
�

⇤(0
,�

0), and

(⇡, F ) ` (0
,�

0)
◆

0
7�!
emp

(00
,�

0), and

(b) LG((�0 [ �,�

0), (µ,�0,⌃, F )), and ◆

µ.f

,! ◆

0, and
(c) ((�,F), (k0

,⌃), •) 4(j,(emp,emp))
µ

((⇡, F ), (00
,�

0), •)
or ◆ = ret(v);

3. 8�0
,⌃0

, v

s

, k0
, v

t

, if � = • and AftExtn(k, v
s

) = k0 and

v

s

µ.f

,! v

t

Rely(µ, (⌃,⌃0
,F), (�,�0

, F )),
then there exists 0, j such that
(a) AftExtn(, v

t

) = 

0, and
(b) ((�,F), (k0

,⌃0), �) 4(j,(emp,emp))
µ

((⇡, F ), (0
,�

0), �).

The simulation (sl, �) 4 (tl,⇡) relates the executions of the
source module � and the target module ⇡. We first use the languages’
InitCore functions (see Fig. 4) to initialize the “core” states k and
. We assume their executions start from the same initial memory
states at the source and target levels, and the whole memory is shared
between the current thread and its environment. We define µ with
the injective function idS, which is the identity function on S. That
is, dom(idS) = S and 8l 2 S. idS(l) = l.

The index i and the history footprints (�0, �0) are introduced to
ensure footprint preservation. Since compilations may reorder in-
structions, it may be more natural to relate the footprints of multiple
source steps to the corresponding target footprints. Our simulation
allows one to accumulate the footprints using the history footprints
(�0, �0), and check FPmatch (the footprint matching condition, de-
fined in Fig. 19) later. Note that one may choose to check FPmatch
at every source step. Whether to accumulate footprints or check
FPmatch depends on the compilation applications, and we leave
the choices to verifiers. However, for infinite executions, it is not
allowed to continuously accumulate the footprints and never check
FPmatch. Therefore our simulation is parameterized with a metric
i from a well-founded set index. The metric should decrease at

steps that accumulate the footprints and could be reset at steps that
check FPmatch.

We also introduce a bit � to indicate the synchronization points
(i.e., the program points when the control may switch to the
environment). It takes two values • and �. Initially it is •, indicating
a possible switch that allows the environment threads to make steps
before the current thread starts. Internal ⌧ -steps of the current thread
keeps � to be � (see condition 1 in Def. 28). When the current thread
makes a transition labeled with e, entA or extA (see condition 2 in
Def. 28), we set � from � to •. The environment can interfere with
the current thread when � is • (see condition 3 in Def. 28). After
the environment interference, � should be reset to �.

Our simulation definition follows the diagram in Fig. 2(b). Every
source ⌧ -step should correspond to zero-or-multiple target ⌧ -steps
(see condition 1 in Def. 28). One may check FPmatch for footprints
accumulated till the current steps and reset the metric (see 1(a)),
or choose to continue accumulating the footprints and decrease the
metric (see 1(b)). To simplify the presentation, [[[??]]] the footprints
should be accumulated when the source step correspond to zero
target steps.

At switch points (see condition 2 in Def. 28), we check FPmatch
for the accumulated footprints and reset the metric. We also evolve
µ to µ

0, which satisfies EvolveG (defined in Fig. 19).
We require the simulation relation is preserved after the envi-

ronment interference (see condition 3 in Def. 28). The environment
steps should not change the current thread’s local memory. The con-
dition 3(a) disallow the environment threads to update locations in
the current thread’s F (or F at the target level) except in the shared
parts S (or corresponds to S). Here == is defined at the bottom of
Fig. 4. After the environment step, µ is evolved to µ

0 satisfying
EvolveR (defined in Fig. 19).
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