
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Towards Certified Compositional Compilation for
Concurrent Programs

ANONYMOUS AUTHOR(S)

Certified compositional compilation is important for establishing end-to-end guarantees for certified systems
consisting of separately compiled modules. In this paper, we propose a language-independent framework
consisting of the key semantics components and verification steps that bridge the gap between the compilers for
sequential programs and for (race-free) concurrent ones, so that the efforts on certified sequential compilation
can be reused for concurrent programs. One of the key contributions of the framework is a novel footprint-
preserving compositional simulation as the compilation correctness criterion. With our framework, we have
verified the correctness of the CompCert x86 backend (including all the translation phases from Cminor to
x86, and two optimization phases) for compositional compilation of race-free concurrent programs.

1 INTRODUCTION
Compositional compilation is important for real-world systems, which usually consist of multiple
program modules that need to be compiled independently. Correct compilation then needs to
guarantee that the target modules can work together and preserve the semantics of the source
program as a whole. It requires not only that individual modules be compiled correctly, but also
that the expected interaction between modules be preserved at the target.
CompCert [Leroy 2009a], the most well-known certified realistic compiler, establishes the se-

mantics preservation property for compilation of sequential Clight programs, but with no explicit
support of separate compilation. To support general separate compilation, Stewart et al. [2015]
develop Compositional CompCert, which allows the modules to call each other’s external functions.
Like CompCert, Compositional CompCert only supports sequential programs too. There each
module interacts with others only at certain program points specified in the module code (i.e., at
external calls only). Also there needs to be one-to-one correspondence between the interaction
points in the target program and those in the source. However, in interleaving concurrency, a thread
(viewed as a module) can be preempted by others at any non-deterministically chosen program
points, and the target program is usually more fine-grained and have more interaction points than
the source. It is unclear if their approach can be applied to compilation of concurrent programs.
Stewart et al. [2015] do argue that Compositional CompCert may be extended for certified

compositional compilation of data-race-free (DRF) concurrent programs. They argue that, for DRF
concurrent programs, the behaviors of the threads under the standard interleaving semantics should
be equivalent to those in some non-preemptive semantics where the control of the CPU switches
between threads at certain designated program points. Since a thread cannot be interrupted between
two consecutive switch points in the non-preemptive semantics, the code segment between the
two switch points can be compiled as sequential code. The sequential compilation is sound as long
as the switch points are viewed as external function calls so that optimizations do not go beyond
them. Although the argument is plausible, there are still significant challenges in building fully
certified compositional compilers for DRF concurrent programs:

• We need a proper formulation of the non-preemptive semantics and the notion of DRF. On the
one hand, the formulation relies on the synchronization constructs in the language and the
notion of footprints (i.e. the memory locations accessed in each step), On the other hand, like
the interaction semantics in Compositional CompCert [Stewart et al. 2015], the formulation

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

should be language-independent to support general compositional compilation, where the
modules can be implemented in different languages.

• We need to prove that DRF programs behave the same in the standard preemptive semantics
and in our non-preemptive semantics, preferably in a language-independent setting. Also
the equivalence should be strong enough to preserve the termination of programs, a natural
correctness requirement for certified compilation. Although such semantics equivalence
has been known as a folklore theorem, we have not seen any mechanized proofs of such
termination-preserving semantics equivalence in a language-independent setting. As we will
explain in Sec. 2.2, the proofs can actually be quite challenging, and the complexity is affected
by many factors of language semantics design, such as semantics for memory allocation.

• We need to prove the compilation preserves DRF, which ensures that the target compiled
from a DRF source is DRF too. Then the behaviors of the target program in the preemptive
semantics are the same as those in the non-preemptive semantics. However, since a data
race involves the behaviors of at least two threads, DRF is not a thread-local property. Then,
how do we prove DRF-preservation of a compositional compilation, which compiles one
module/thread at a time without knowledge of other modules/threads? That is, we need a
compositional proof of the non-local DRF-preservation property.

• Concurrency introduces non-determinism, which makes it difficult to directly reuse the
downward simulation proofs in CompCert and Compositional CompCert. Instead of proving
the source program simulates the target (i.e., upward simulation), CompCert proves the
reverse direction (downward simulation), and then derive the semantics equivalence based on
the determinism of the language semantics. Since the source is usually more coarse-grained
than the target, the downward simulation is simpler to prove than the upward one. However,
it is unclear if such a proof strategy can still be applied for concurrent languages, whose
semantics is non-deterministic.

We will explain the challenges in detail in Sec. 2, and discuss more related work on certified
compilation in Sec. 9.
In this paper, we propose a language-independent framework consisting of the key semantics

components and verification steps that bridge the gap between compilation for sequential programs
and for DRF concurrent programs. We also apply our framework to verify the correctness of
CompCert x86 backend for compositional compilation of DRF programs. Our work is based on
previous work on certified compilation, but makes the following new contributions:

• We design a compositional footprint-preserving simulation as the correctness formulation of
separate compilation for sequential modules. As an extension of the simulation in Compositi-
onal CompCert, our simulation considers module interactions at both external function calls
and synchronization points, thus is compositional with respect to both module linking and
non-preemptive concurrency. It also requires that the footprints of the steps made by the
source and target modules be related, where footprints refer to the set of memory locations
accessed at each step of execution. This way we reduce the proof of DRF-preservation for
whole programs into proofs of local footprint preservation.

• We work with an abstract programming language, which is not tied to any specific synchroni-
zation constructs such as locks but uses abstract labels to model how such constructs interact
with other modules. It also abstracts away the concrete primitives that accesses memory.
We introduce the notion of well-defined languages to enforce a set of constraints over the
state transitions and the related footprints, which actually give an extensional interpretation
of footprints. These constraints are satisfied by various real languages such as Cminor and
x86 assembly. With the abstract language, we study the equivalence between preemptive

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

1:3

S ≈ C

⇑ Det(C)

S ⊑ C

⇑

S - C

(a) CompCert

S1 ◦ . . . ◦ Sn ≈ C1 ◦ . . . ◦Cn

⇑ Det(C1 ◦ . . . ◦Cn)

S1 ◦ . . . ◦ Sn ⊑ C1 ◦ . . . ◦Cn

⇑

S1 ◦ . . . ◦ Sn - C1 ◦ . . . ◦Cn

⇑

∀i . R,G ⊢ Si -′ Ci

(b) Compositional CompCert

S S ′

C C ′
+

- -

(c) S - C

S1 S2 S3 S4

C1 C2 C3 C4

-′ -′ -′ -′G R G
+ +

(d) R,G ⊢ S -′ C

Fig. 1. Proof structures of certified compilation.

and non-preemptive semantics, the equivalence between DRF and NPDRF (the notion of
race-freedom defined in the non-preemptive setting [Xiao et al. 2018]), and the properties
of our new simulation. As a result, the lemmas in our proof framework are re-usable when
instantiating to real languages.

• Putting all these together, our framework (see Fig. 2) is the first to build certified compositional
compilation for concurrent programs from sequential compilation. It highlights the importance
of DRF preservation for correct compilation. It also shows a possible way to adapt the existing
work of CompCert and Compositional CompCert to interleaving concurrency.

• As an instantiation of our language-independent compilation verification framework, we
instantiate the source and target languages as Cminor and x86 assembly with lock prefix.
We have successfully proved that the CompCert-3.0.1 [2017] x86 backend (including all the
translation phases and one optimization phase) satisfy our compilation correctness criterion.
In the verification of the CompCert compilation phases, we reuse a considerable amount of
the original CompCert proofs, with minor adjustment for footprint-preservation. The proofs
for each phase take less than one person week on average.

In the rest of this paper, we first analyze the challenge and give an overview of our approach in
Sec. 2. We give the basic technical setting in Sec. 3, including the preemptive semantics and the
refinement definition. Sec. 4 presents the non-preemptive semantics, which is the basis for both
our new simulation (Sec. 5) and the NPDRF definition (Sec. 6). We show the final theorem in Sec. 7,
and discuss the implementation details in Sec. 8. We conclude and discuss related work in Sec. 9.

2 INFORMAL DEVELOPMENT
Below we first give an overview of the main ideas in CompCert [Leroy 2009a] and Compositional
CompCert [Stewart et al. 2015] as starting points for our work. Then we explain the challenges and
our ideas in reusing them to build certified compositional compilation for concurrent programs.

2.1 Background
2.1.1 CompCert. The pioneer work on CompCert [Leroy 2009a,b] builds certified compilation

for sequential programs. Fig. 1(a) shows its key proof structure.
The compilation Comp is correct, if for every source program S , the compiled code C preserves

the semantics of S . That is, Correct(Comp) def
= ∀S,C . Comp(S) = C =⇒ S ≈ C . Here the semantics

preservation S ≈ C requires S and C have the same sets of observable event traces:
S ≈ C iff ∀B. Etr(S,B) ⇐⇒ Etr(C,B) .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

Here we write Etr(S,B) to mean that an execution of S produces the observable event trace B, and
likewise for C . The observable events include control effects (e.g., termination and exceptions) and
input-output events, which in CompCert correspond to invocations of external functions.
To verify S ≈ C , CompCert relies on the determinism of the target language (written as Det(C)

in Fig. 1(a)) and proves only the downward direction S ⊑ C , i.e., S is a refinement of C .
S ⊑ C iff ∀B. Etr(S,B) =⇒ Etr(C,B) .

The determinism Det(C) ensures that C admits only one observable behavior, so one can derive
the upward refinement S ⊒ C from S ⊑ C . The latter is then proved by constructing a (downward)
simulation relation S - C . Depicted in Fig. 1(c), the simulation S - C establishes a consistency
relation between S and C , which is always preserved under some correspondence between the
executions of S and C . Every step of S must correspond to zero-or-more steps of C . Figure 1(c)
shows the case when the source step corresponds to multiple target steps.

The simulation - serves as a proof technique for verifying whole-program compilation, but it is
not compositional and cannot be used for verifying separate compilation. This is because - does
not take into account the interactions with other modules which may update the shared resource.

2.1.2 Compositional CompCert. Compositional CompCert [Stewart et al. 2015] supports separate
compilation by re-defining the simulation relation for modules. Figure 1(b) shows the proof structure
of Compositional CompCert. Suppose we have separate compilation Comp1, . . . ,Compn . Each
Compi transforms a source module Si to a target module Ci . The overall compilation is correct
if, when linked together, the target modules C1 ◦ . . . ◦ Cn preserve the semantics of the source
modules S1 ◦ . . . ◦ Sn (here we write ◦ as the module-linking operator). For example, the following
program consists of two modules. The function f in module S1 calls the external function g. The
external module S2 may access the variable b in S1.

// Module S1
extern void g(int *x);
int f(){

int a = 0, b = 0;
g(&b);
return a + b; }

// Module S2
int g(int *x){

*x = 3;
}

(2.1)

Suppose the two modules S1 and S2 are independently compiled to the target modules C1 and C2.
Aligned with the external call in S1, C1 also calls the external function g in C2. The correctness of
the overall compilation requires (S1 ◦ S2) ≈ (C1 ◦ C2).
With the determinism of the target modules, we only need to prove the downward refinement

(S1◦S2) ⊑ (C1◦C2), which is reduced to proving (S1 ◦ S2) - (C1 ◦ C2), just as in CompCert. Ideally
we hope to know (S1◦S2) - (C1◦C2) from S1 - C1 and S2 - C2, and ensure the latter two by
correctness of Comp1, . . . ,Compn . However, the CompCert simulation - is not compositional.

To achieve compositionality, Compositional CompCert defines the simulation relation -′ shown
in Fig 1(d). It is parameterized with the interactions between modules, formulated as the rely/guaran-
tee conditions R and G [Jones 1983]. The rely condition R of a module specifies the permitted state
transitions of its environment (i.e., other modules that may be linked together) at both the source
and target levels, and the guarantee G specifies the possible transitions made by the module itself.
The simulation diagram in Fig 1(d) requires that the steps of the current module (the thin arrows)
be allowed inG , and the simulation -′ be preserved by the environment steps R (the thick arrows).
Note that the R steps happen only at the external function calls of the current module. It models
the general callee behaviors. Such a simulation is compositional as long as the rely/guarantee
conditions of linked modules are compatible.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

1:5

Compositional CompCert proves that the CompCert compilation phases satisfy the new simula-
tion -′ (which is stronger than the CompCert simulation -). The intuition is that the compiler
optimizations do not go beyond external calls (unless only local variables get involved). That is, for
the above example (2.1), the compiler cannot do optimizations based on the assumption that b is 0
at the last line of the function f.

Since the R steps happen only at the external function calls in Compositional CompCert, it cannot
be applied to concurrent programs, where module/thread interactions may occur at any program
point. However, if we consider race-free concurrent programs only, where threads are properly
synchronized, we may consider the interleaving at certain synchronization points only. It is a
well-known folklore theorem that DRF programs in interleaving semantics behave the same as in
non-preemptive semantics. For instance, the following program (2.2) uses a lock to synchronize the
accesses of the shared variables, and it is race-free. Its behaviors are the same as those when the
threads yield controls at lock() and unlock() only. That is, we can view lines 1-2 and lines 4-5
in either thread as sequential code that will not be interfered by the other. The interactions occur
only at the boundaries of the critical regions.

1 r1 = 1;
2 r1 = r1 + 1;
3 lock();
4 x = 1;
5 y = x + 1;
6 unlock();

r2 = 2;
r2 = r2 + 1;
lock();

x = 2;
y = x + 1;

unlock();

(2.2)

Intuitively, we can use Compositional CompCert to compile the program, where the code segment
between two consecutive switch points is compiled as sequential code. By viewing the switch points
as special external function calls, the simulation -′ can be applied to relate the non-preemptive
executions of the source and target modules.
Although the idea is plausible, we have to address several key challenges to really apply it to

build certified compositional compilers, as we explain below.

2.2 Challenges and Our Approaches in Verifying Concurrent Program Compilation
2.2.1 How to give language-independent formulation of DRF and non-preemptive semantics? The

interaction semantics in Compositional CompCert describes module interaction without referring
to the concrete languages used to implement the modules. This allows composition of modules
implemented in different languages. We would like to follow the semantics framework, but how do
we define DRF and non-preemptive semantics if we do not even know the concrete synchronization
constructs and the commands that access memory?

Our solution. We extend the module-local semantics in Compositional CompCert so that each
local step of a module reports its footprints, i.e. the memory locations it accesses. Instead of relying
on the concrete memory-access commands to define what valid footprints are, we introduce the
notion of well-defined languages (in Sec. 3) to specify the requirements over the state transitions
and the related footprints. For instance, we require the behavior of each step is affected by the
read set only, and each step does not touch the memory content outside of the write set. When we
instantiate the framework with real languages, we prove they satisfy these requirements.

Besides, we also allowmodule-local steps to generate messages EntAtom and ExtAtom to indicate
the boundary of the atomic operations inside the module. The concrete commands that generate
these messages are unspecified, which can be different in different modules. In Sec. 8.1 we show
how the lock-prefixed x86 instructions as synchronization constructs generate these messages.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Anon.

2.2.2 What memory model to use in the proofs? The choice of memory models could greatly
affect the complexity of proofs. For instance, using the same memory model as CompCert allows
us to reuse CompCert proofs, but it also causes many problems. The CompCert memory model
records the next available block number nextblock for memory allocation. Using the model under
a concurrent setting may allow all threads to share one nextblock. Then allocation in one thread
would affect the subsequent allocations in other threads. This breaks the property that re-ordering
non-conflicting operations from different threads would not affect the final states, which is a key
lemma we rely on to prove the equivalence between preemptive and non-preemptive semantics for
DRF programs. In addition, sharing the nextblock by all threads also means we have to keep track
of the ownership of each allocated block when we reason about footprints.

Our solution. We decide to use a different memory model from the one of CompCert. We reserve
separate address spaces F for memory allocation in different threads (see Sec. 3). Therefore allocation
of one thread would not affect behaviors of others. This greatly simplifies the semantics and the
proofs, but also makes it almost impossible to reuse CompCert proofs, as we explain in Sec. 8.2. We
address this problem by establishing some semantics equivalence between our memory model and
the CompCert memory model (shown in Sec. 8.2.1).

2.2.3 How to compositionally prove DRF-preservation? The simulation -′ in Compositional
CompCert is not sufficient to ensure DRF-preservation. As we have explained, DRF is a whole-
program property, and so is DRF-preservation. To support separate compilation, we need to reduce
the requirement of DRF-preservation on whole programs to some requirements on single threads.
In particular, we hope to encode the requirements in the thread-local and module-local simulation.

Our solution. We propose a new compositional simulation 4 which extends -′ with the require-
ments of footprint-preservation on single threads. In detail, based on the simulation diagram in
Fig. 1(d), we additionally require footprint consistency saying that the targetC should have the same
or smaller footprints than the source S during related transitions. For instance, when compiling
lines 4-5 of the left thread in (2.2), the target is only allowed to read x and write to x and y.
Note that we check footprint consistency at switch points only. This way we allow compiler

optimizations as long as they do not go beyond the switch points. For the example in (2.2), the
target of lines 4-5 of the left thread could be y=2;x=1 where the writes to x and y are swapped.

2.2.4 How to flip refinement/simulation with non-deterministic behaviors? As we explained, the
last steps of CompCert and Compositional CompCert in Fig. 1 derive semantics equivalence ≈ (or
the upward refinement ⊒) from the downward refinement ⊑ using determinism of target programs.
Actually the simulations - and -′ can also be flipped if the target programs are deterministic.
It is unclear if the refinement or simulation can still be flipped in the concurrent settings where
programs have non-deterministic behaviors. The problem is that the target program can be more
fine-grained and have more non-deterministic interleavings than the source.

Our solution. Data-race-freedom and the non-preemptive semantics come to the rescue. For
DRF programs, the switch points in the target are aligned with those in the source under the
non-preemptive semantics. Also the target and source programs can always make the same non-
deterministic choices of thread switching. Thus we are able to flip the downward simulation to
derive upward simulation, assuming determinism of each target module.

2.3 The framework and key semantics components
Figure 2 shows the semantics components and proof steps in our framework. The ultimate goal of
our compilation correctness proof is to show the semantics preservation of the source and target

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

1:7

S1 ∥ ... ∥ Sn C1 ∥ ... ∥ Cn≈

S1 | ... | Sn C1 | ... | Cn≈

S1 | ... | Sn C1 | ... | Cn<

S1 | ... | Sn C1 | ... | Cn4

∀i . R,G ⊢ Si 4 Ci

DRF(C1 ∥ ... ∥ Cn)

NPDRF(C1 | ... | Cn)

NPDRF(S1 | ... | Sn)

DRF(S1 ∥ ... ∥ Sn)

≈1 ≈

8

6

2

5

4 ∀i . Det(Ci)

3
7

Fig. 2. Our framework

programs (i.e., S1 ∥ . . . ∥ Sn ≈ C1 ∥ . . . ∥ Cn at the top of the figure). This follows the correctness
of the separate compilation of each module, formulated as R,G ⊢ Si 4 Ci (the bottom left), which
is our new footprint-preserving module-local simulation explained above. We do the proofs in the
following steps. Note that the double arrows in the figure represent logical implication.

First, we restrict the compilation to source preemptive programs that are data-race-free (i.e.,
DRF(S1 ∥ . . . ∥ Sn) at the right bottom of the figure). Then from the equivalence between the
preemptive and non-preemptive semantics, we derive 1 , the equivalence between S1 ∥ . . . ∥ Sn
and S1 | ... | Sn , the latter representing non-preemptive execution of the threads. Similarly, if we
have DRF(C1 ∥ . . . ∥ Cn) (at the top right), we can derive 2 . With 1 and 2 , we can derive the
semantics preservation ≈ between preemptive programs from the semantics preservation between
their non-preemptive counterparts.

Second, DRF of the target programs is obtained through the right path 6 , 7 and 8 . We define a
notion of DRF for non-preemptive programs (called NPDRF in the figure), making it equivalent to
DRF, fromwhich we can derive 6 and 8 . To knowNPDRF(C1 | . . . | Cn) fromNPDRF(S1 | . . . | Sn),
we need a DRF-preserving simulation 4 between non-preemptive programs (see 7).

Third, the DRF-preserving simulation 4 for non-preemptive whole programs can be derived by
composing our footprint-preservation local simulation (step 5). Given the the downward whole-
program simulation, we flip it to get an upward one (step 4), with the extra premise that the local
execution in each target module is deterministic. Using the simulation in both directions we derive
the equivalence (step 3).

Note that the notations used here are simplified ones to give a semi-formal overview of the key
ideas. We may use different notations in the formal development in the following sections.

3 THE LANGUAGE AND THE PREEMPTIVE SEMANTICS
3.1 The Abstract Language
Figure 3 shows the syntax and the state model of an abstract language for preemptive concurrent
programming. A program P consists of n threads running in parallel. Each thread starts execution
from an entry f, which points to the code segment defined in the code π of a module declared in Π.
Each module declaration is a triple consisting of the language declaration tl, the global environment
ge containing the addresses of static global variables declared in the module, and the code π of the
module. Here we use P(Addr) to represent the powerset of memory addresses Addr.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

(Prog) P ,P ::= let Π in f1 ∥ . . . ∥ fn (Entry) f ∈ String
(MdSet) Π, Γ ::= {(tl1, ge1,π1), . . . , (tlm , gem ,πm)} (Module) π ,γ ::= . . .

(Lang) tl, sl ::= (Module, Core, InitCore, 7−−→) (Core) κ,k ::= . . .

ge ∈ P(Addr) InitCore ∈ Module → Entry⇀ Core
7−−→ ∈ FList × (Core × State) → {P((Msg × FtPrt) × (Core × State)), abort}

(ThrdID) t ∈ N (Addr) l ::= . . .

(State) σ , Σ ∈ Addr⇀fin Val (Val) v ::= l | . . .

(FtPrt) δ ,∆ ::= (rs,ws) where rs,ws ∈ P(Addr) (FList) F ,F ∈ Pω (Addr)
(Msg) ι ::= τ | e | ret | EntAtom | ExtAtom (Event) e ::= . . .

(Config) ϕ,Φ ::= (κ,σ) | abort

Fig. 3. The Abstract Concurrent Language

Since different modules may be written in different languages, we define the abstract module
language tl as a tuple (Module,Core, InitCore, 7−−→).Module describes the syntax of programs. Follo-
wing Compositional CompCert [Stewart et al. 2015], Core is the set of internal “core” states, which
can be instantiated to control continuations, instruction streams, register files, etc.The function
InitCore is called whenever a thread is created or a cross-module external function call is made.
Given a module π and an entry name f, InitCore returns the initial “core” stateκ (which is undefined
if the entry is not contained in the module). In this paper we mainly focus on compositional compi-
lation of concurrent programs, where threads can be from different modules. Since cross-module
external calls are mostly orthogonal, we omit them to simplify the presentation. We do support
external calls in our Coq implementation in the same way as in Compositional CompCert. The labelled
transition “ 7−−→” models the local execution of a module, which we explain below. To instantiate a
language tl, one needs to provide concrete definitions for each component described above.

Module-local semantics. The local execution steps inside a module is modeled as a labeled tran-
sition in the form of F ⊢tl (κ,σ)

τ
7−→
δ

(κ ′,σ ′) (or F ⊢tl (κ,σ)
ι
7−−→
δ

abort if the step goes wrong). In
addition to its core state κ, each module can also access the memory state σ , which is a finite partial
mapping from memory addresses to values. We leave the meta-type Addr undefined, which can
be instantiated for specific languages. For instance, each address in the Cminor memory model
can be instantiated into a pair of a block number and an offset. Each step may change the core
state and the memory state into κ ′ and σ ′ respectively. It is also labeled with a message ι and a
footprint δ . Note that the step relation can be non-deterministic. That is, given a pair (κ,σ), there
can be more than one resulting states (κ ′,σ ′), and the corresponding messages ι and footprints δ
can be different. To avoid clutter, we usually omit the parameter tl in the judgment.

Fig. 4. The state model

Each module also has a free list F . It is the pool of
memory addresses from which fresh memory cells are
allocated. It can be viewed as the preserved space for
allocating local stack frames, where “F−dom(σ)” is the
set of free addresses, shown in Fig. 4 as the part outside
of the boundary of σ . Initially we require F ∩dom(σ) =
∅, and the only memory accessible by the module is the
static global variables declared in the ge of all modules,
represented as the shared part S in Fig. 4. The local
execution of a module may allocate memory from its F ,
which enlarges the state σ . The memory allocated from

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

1:9

F is exclusively owned by this module. We allow the set F to be infinite. F for different modules
must be disjoint.

The messages ι contain information about the module-local steps. To simplify the presentation,
we only consider externally observable events e (such as outputs), termination of threads (ret),
and the beginning and the end of atomic blocks (EntAtom and ExtAtom). Any other steps are silent,
labeled with τ . The label τ is often omitted for cleaner presentation. Atomic blocks are the language
constructs to ensure sequential execution of code blocks inside them. They can be implemented
differently in different module languages. In the example given in Sec. 8.1 we instantiate atomic
blocks with lock prefixed instructions in x86. The messages define the protocols of communications
with the global whole-program semantics (presented below). All the module languages use the
same message formats. They allow us to abstract away details of the module languages, and focus
on the interactions with other modules and the external observer (the latter observes e only).

The footprint δ is defined as a pair (rs,ws), which records the memory locations read and written
in this step. Recording the footprint allows us to discuss races between threads in the following
sections. We write emp for the special footprint where both the read and write sets are empty. Below
we may directly use δ as a set, which is a shorthand for δ .rs ∪ δ .ws.

Conventions. We use two sets of symbols to distinguish the source and the target level notations.
The blackboard bold or capital letters (e.g., P, F, k and Σ) are used for the source, while their
counterparts (e.g., P , F , κ and σ) are for the target. The set of modules at source is written as Γ, to
distinguish from the target Π. Similarly, γ is a source module while π is a target one.

Well-defined languages. Although the abstract module language tl can be instantiated with
different real languages, the instantiation needs to satisfy certain basic requirements. We define
these requirements aswell-defined languages below in Def. 1. It gives us an extensional interpretation
of footprints. It is also used to prove properties of DRF programs in the sections below.

Definition 1 (Well-Defined Languages). wd(tl) iff , for any execution step F ⊢ (κ,σ)
ι
7−→
δ

(κ ′,σ ′)

in this language, all of the following hold (some auxiliary definitions are in Fig. 5):
(1) forward(σ ,σ ′);
(2) LEffect(σ ,σ ′,δ , F)

(3) for any σ1, if LEqPre(σ ,σ1,δ , F), then there exists σ ′
1 such that F ⊢ (κ,σ1)

ι
7−→
δ

(κ ′,σ ′
1) and

LEqPost(σ ′,σ ′
1,δ , F).

(4) for any δ0 and σ1, if δ0 =
⋃
{δ ′′ | ∃κ ′′,σ ′′. F ⊢ (κ,σ)

τ
7−→
δ ′′

(κ ′′,σ ′′)} and LEqPre(σ ,σ1,δ0, F),

then ∀κ ′′
1 ,σ

′′
1 , ι

′′
1 ,δ

′′
1 . F ⊢ (κ,σ1)

ι′′1
7−→
δ ′′
1

(κ ′′
1 ,σ

′′
1) =⇒ ∃σ ′′. F ⊢ (κ,σ)

ι′′1
7−→
δ ′′
1

(κ ′′
1 ,σ

′′).

It requires that a step may enlarge the memory domain but cannot reduce it (see Item (1), where
forward(σ ,σ ′) is defined in Fig. 5), and the additional memory should be allocated from F and
included in the write set (as required in Item (2)). This requirement follows the CompCert memory
model where memory disposal does not really remove the locations from the memory (they just
become invalid). Item (2) also requires that the memory out of the write set should keep unchanged,
as described by σ dom(σ)−δ .ws

============ σ ′ (which is defined at the top of Fig. 5). Item (3) says the memory
updates and allocation only depend on the memory content in the read set, and the set of memory
locations already allocated from F . Item (4) requires that the non-determinism of each step is not
affected by memory contents outside of all the possible read sets. Here δ0 is the union of footprints
in all possible steps. Then for any state σ1 with the same contents in the read set of δ0 and the same
set of allocated addresses as in σ , it does not generate any new behavior that cannot be generated

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Anon.

σ
rs
==== σ ′ iff ∀l ∈ rs. l < (dom(σ)∪dom(σ ′)) ∨ l ∈ (dom(σ)∩dom(σ ′)) ∧ σ (l) = σ ′(l)

δ ⊆ δ ′ iff (δ .rs ⊆ δ ′.rs) ∧ (δ .ws ⊆ δ ′.ws) δ ∪ δ ′
def
= (δ .rs ∪ δ ′.rs, δ .ws ∪ δ ′.ws)

forward(σ ,σ ′) iff (dom(σ) ⊆ dom(σ ′))

LEqPre(σ1,σ2,δ , F) iff σ1
δ .rs
====== σ2 ∧

(dom(σ1) ∩ δ .ws) = (dom(σ2) ∩ δ .ws) ∧ (dom(σ1) ∩ F) = (dom(σ2) ∩ F)

LEqPost(σ ′
1,σ

′
2,δ , F) iff σ ′

1
δ .ws
====== σ ′

2 ∧ (dom(σ ′
1) ∩ F) = (dom(σ ′

2) ∩ F)

LEffect(σ1,σ2,δ , F) iff σ1
dom(σ1)−δ .ws
============== σ2 ∧ (dom(σ2)−dom(σ1)) ⊆ (δ .ws ∩ F)

Fig. 5. Notations and auxiliary definitions about states and footprints

by σ . This property ensures that, for data-race-free programs, the possible execution steps of a
thread cannot be affected by the interleaving with other threads.

3.2 Global preemptive semantics
(World) W ,W ::= (T , t,d,σ) (AtomBit) d ::= 0 | 1

(ThrdPool) T ,T ::= {t1 ; (tl1, F1,κ1), . . . , tn ; (tl1, Fn ,κn)}

(GMsg) o ::= τ | e | sw (ASet) S,S ∈ P(Addr)
Fig. 6 defines a set of global semantics rules to manipulate the preemption among threads. As

shown above, the global worldW consists of the thread pool T , the ID t of the thread currently
being executed, a bit d indicating whether the current thread is in an atomic block or not, and the
memory state σ . The thread pool T maps a thread ID to a triple recording the module language tl,
the free list F , and the current core state κ.
The Load rule in Fig. 6 shows the initialization of the world from the program and an initial

program state σ . We assume the code π of modules in Π has disjoint entries (i.e. code labels).
Therefore, for each entry fi of the thread i , we can find at most one module declaration in Π
containing it. The core state κi is created through the InitCore function of the corresponding
language. For each thread, we also assign a local address space F for allocation of stack frames. The
local address spaces for the threads must be disjoint, and initially they are disjoint with the domain
of σ . We non-deterministically pick a thread t as the current thread. The bit d is set to 0, indicating
that the current thread is not in the atomic block.

The transition rules of the whole world is given in Fig. 6. Like local transitions, global transitions
are also labeled with footprints and messages o. Here o marks a silent τ step, a step with external
event e , or a switch (sw) step, as defined above. Different from the messages ι that record both
external events and inter-module communications, the global messages o only record the externally
observable events, i.e., events that are observable to the human being sitting in front of the computer
or printer. The switch message sw is an exception, which is for verification purpose only.
Each global step executes the module locally and processes the message of the local transition.

The τ -step rule and the Print rule show the local τ -step and the step generating an external event,
respectively. Note that the Print rule requires that the flag d must be 0, i.e., external events can be
generated only outside of atomic blocks. Also the step generating an external event does not access
memory, so its footprint is empty (emp).
The EntAt and ExtAt rules correspond to the entry and exit of atomic blocks, respectively. The

flag d is flipped in the two steps. Since context-switch can be done only when d is 0, as required by
the Switch rule below, we know a thread in its atomic block cannot be preempted.

When the current thread terminates, we either remove it from the thread pool and then switch to
another thread if there is one (see the Term rule), or terminate the whole program if not, as shown
in the Done rule. The Term rule generates the sw message to record the context switch.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

1:11

for all i and j in {1, . . . ,n}, and i , j:
Fi∩Fj = ∅ dom(σ)∩Fi = ∅ tli .InitCore(πi , fi) = κi , where (tli , gei ,πi) ∈ Π

T = {1 ; (tl1, F1,κ1), . . . ,n ; (tln , Fn ,κn)} t ∈ {1, . . . ,n}

(let Π in f1 ∥ . . . ∥ fn ,σ)
load
===⇒ (T , t, 0,σ)

Load

T (t) = (tl, F ,κ) F ⊢ (κ,σ)
τ
7−→
δ

(κ ′,σ ′)

T ′ = T {t ; (tl, F ,κ ′)}

(T , t,d,σ)
τ
=⇒
δ

(T ′, t,d,σ ′)

τ -step

T (t) = (tl, F ,κ) F ⊢ (κ,σ)
e
7−−→
emp

(κ ′,σ)

T ′ = T {t ; (tl, F ,κ ′)}

(T , t, 0,σ)
e
==⇒
emp

(T ′, t, 0,σ)
Print

T (t) = (tl, F ,κ) F ⊢ (κ,σ)
EntAtom
7−−−−−−−→

emp
(κ ′,σ)

T ′ = T {t ; (tl, F ,κ ′)}

(T , t, 0,σ)
τ
==⇒
emp

(T ′, t, 1,σ)
EntAt

T (t) = (tl, F ,κ) t′ ∈ dom(T \t)

F ⊢ (κ,σ)
ret
7−−−→
emp

(κ ′,σ)

(T , t, 0,σ)
sw
==⇒
emp

(T \t, t′, 0,σ)
Term

T (t) = (tl, F ,κ) F ⊢ (κ,σ)
ExtAtom
7−−−−−−−→

emp
(κ ′,σ)

T ′ = T {t ; (tl, F ,κ ′)}

(T , t, 1,σ)
τ
==⇒
emp

(T ′, t, 0,σ)
ExtAt

T (t) = (tl, F ,κ) dom(T) = {t}

F ⊢ (κ,σ)
ret
7−−−→
emp

(κ ′,σ)

(T , t, 0,σ)
τ
==⇒
emp

done
Done

t′ ∈ dom(T)

(T , t, 0,σ)
sw
==⇒
emp

(T , t′, 0,σ)
Switch

T (t) = (tl, F ,κ) F ⊢ (κ,σ) 7−−→
δ

abort

(T , t, 0,σ)
τ
=⇒
δ

abort
Abort

Fig. 6. The Preemptive Global Semantics

The Switch rule shows that context switch can occur at any program point outside of atomic
blocks (d = 0). This also indicates that the semantics is preemptive. The step is also marked with
the sw message. The Abort rule says the whole program aborts if a local module aborts.
Below we write F ⊢ ϕ

τ
7−−→
δ
+ϕ ′ for multiple silent-step transitions, where δ is the accumulation

of the footprints generated. F ⊢ ϕ
τ
7−−→
δ

∗ϕ ′ is for zero or multiple silent-step transitions, where δ is

emp for the case of zero step. Similarly, for global steps, we writeW
τ
=⇒
δ
+W ′ for multiple silent-step

transitions. Besides, we also writeW =⇒+W ′ for multiple steps that either are silent or produce sw
events. It must contain at least one silent step. The meanings ofW =⇒+ abort andW =⇒+ done are
similar.W

e
=⇒+W ′ represents multiple steps with exactly one e event produced (while other steps

either are silent or produce sw events).

3.3 Event-Trace Refinement and Equivalence
The correctness of compilation for concurrent programs is defined as the event-trace refinement
(or equivalence) between source and target programs. An externally observable event trace B is a
finite or infinite sequence of external events e , and may end with a termination marker done or an
abortion marker abort. It is co-inductively defined as follows.

(EvtTrace) B ::= done | abort | ϵ | e ::B (co-inductive)

ProgEtr((P ,σ),B) iff ∃W . ((P ,σ) load
===⇒W) ∧ Etr(W ,B)

W =⇒+ abort
Etr(W , abort)

W =⇒+ done
Etr(W ,done)

W
e
=⇒+W ′ Etr(W ′,B)

Etr(W , e ::B)

W =⇒+W ′ Etr(W ′, ϵ)

Etr(W , ϵ)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Anon.

We use ProgEtr((P ,σ),B) to say that the trace B can be produced by executing P with the initial
state σ . The co-inductive definition of Etr(W ,B) says that B can be produced by executingW .
Note we distinguish the traces of non-terminating (diverging) executions from those of terminating
ones. If the execution ofW diverges, its observable event trace B is either of infinitely length, or
finite but does not end with done or abort (called silent divergence, see the right-most rule above).

Then we define the refinement (P, Σ) ⊒ (P ,σ) and the equivalence (P, Σ) ≈ (P ,σ) below. They en-
sure that if (P ,σ) has a diverging execution, so does (P, Σ). Thus the refinement and the equivalence
relations preserve the termination of (P, Σ).

Definition 2 (Event-Trace Refinement and Equivalence).
(P, Σ) ⊒ (P ,σ) iff ∀B. ProgEtr((P ,σ),B) =⇒ ProgEtr((P, Σ),B).
(P, Σ) ≈ (P ,σ) iff ∀B. ProgEtr((P ,σ),B) ⇐⇒ ProgEtr((P, Σ),B).

Following CompCert, the compilation correctness assumes safety of the source programs. Below
we use the event traces to define Safe(W) and Safe(P, Σ).

Definition 3 (Safety). Safe(W) iff ¬∃tr. Etr(W, tr ::abort).
Safe(P, Σ) iff (∃W. (P, Σ) load

==⇒W) and ∀W. ((P, Σ) load
==⇒W) =⇒ Safe(W).

4 THE NON-PREEMPTIVE SEMANTICS
A key step in our framework is to reduce the semantics preservation under the preemptive semantics
to the semantics preservation in non-preemptive semantics. In this section we define the global
non-preemptive semantics, where a thread interacts with other threads at only synchronization
points (i.e., when it enters and exits atomic blocks, and outputs). The non-preemptive semantics is
the basis for both our new simulation (see Sec. 5) and our NPDRF definition (see Sec. 6).

(NPProg) P̂ ::= let Π in f1 | . . . | fn (NPWorld) Ŵ , Ŵ ::= (T , t,d,σ)

(AtomBitMap) d ::= {t1 ; d1, . . . , tn ; dn}

To distinguish from the preemptive concurrency, we write let Π in f1 | . . . | fn for the program
with non-preemptive semantics, denoted by P̂ . As shown above, the non-preemptive global worldŴ
is defined similarly as the preemptive worldW , except that Ŵ keeps an atomic bit map d recording
whether each thread’s next step is inside an atomic block. We need to record the atomic bits of all
threads because the context switch may occur when a thread just enters an atomic block.
Fig. 7 defines the non-preemptive global steps Ŵ :

o
=⇒
δ

Ŵ ′. There is no rule like Switch of
the preemptive semantics, since context switch occurs only at synchronization points in the
non-preemptive setting. The rules Printnp, EntAtnp, ExtAtnp and Termnp execute one step of the
current thread t, and then non-deterministically switch to a thread t′ (which could just be t). The
corresponding global steps produce the sw events (or the external event e in the (Printnp) rule).
Note that in the EntAtnp rule, a thread may switch before it executes the body of the atomic block.
Thus the global step needs to set the corresponding atomic bit in d, indicating that the thread must
be inside an atomic block when it regains the control later. Other rules are very similar to their
counterparts in the preemptive semantics in Fig. 6, and are not presented here.

Similar to Def. 2, we define (P̂, Σ) ⊒ (P̂ ,σ) and (P̂, Σ) ⊒ (P̂ ,σ) for the refinement and equivalence
between programs under non-preemptive semantics.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

1:13

for all i and j in {1, . . . ,n}, and i , j:
Fi∩Fj = ∅ dom(σ)∩Fi = ∅ tli .InitCore(πi , fi) = κi , where (tli , gei ,πi) ∈ Π

T = {1 ; (tl1, F1,κ1), . . . ,n ; (tln , Fn ,κn)} t ∈ {1, . . . ,n} d = {t1 ; 0, . . . , tn ; 0}

(let Π in f1 | . . . | fn ,σ) :
load
===⇒ (T , t,d,σ)

Loadnp

T (t) = (tl, F ,κ) d(t) = 0
F ⊢ (κ,σ)

e
7−→
emp

(κ ′,σ) t′ ∈ dom(T)

T ′ = T {t ; (tl, F ,κ ′)}

(T , t,d,σ) :
e
==⇒
emp

(T ′, t′,d,σ)
Printnp

T (t) = (tl, F ,κ) d(t) = 0
F ⊢ (κ,σ)

ret
7−−−→
emp

(κ ′,σ) t′ ∈ dom(T \t)

(T , t,d,σ) :
sw
==⇒
emp

(T \t, t′,d\t,σ)
Termnp

T (t) = (tl, F ,κ) d(t) = 0

F ⊢ (κ,σ)
EntAtom
7−−−−−−−→

emp
(κ ′,σ)

T ′ = T {t ; (tl, F ,κ ′)} t′ ∈ dom(T)

(T , t,d,σ) :
sw
==⇒
emp

(T ′, t′,d{t ; 1},σ)
EntAtnp

T (t) = (tl, F ,κ) d(t) = 1

F ⊢ (κ,σ)
ExtAtom
7−−−−−−−→

emp
(κ ′,σ)

T ′ = T {t ; (tl, F ,κ ′)} t′ ∈ dom(T)

(T , t,d,σ) :
sw
==⇒
emp

(T ′, t′,d{t ; 0},σ)
ExtAtnp

Fig. 7. The Non-Preemptive Global Semantics

5 THE FOOTPRINT-PRESERVING COMPOSITIONAL SIMULATION
In this section, we define a module-local simulation as the correctness obligation of each module’s
compilation, which is compositional and preserves footprints, allowing us to derive a whole-
program simulation that preserves data-race-freedom. We will discuss compositionality in Sec. 5.2
and postpone the discussions of DRF and NPDRF preservation to Sec. 6.

5.1 The Module-Local Simulation
As informally explained in Sec. 2, the simulation establishes a consistency relation between exe-
cutions of the source module γ and the target one π . To achieve compositionality, our simulation
uses rely/guarantee conditions to specify the interactions between the current module and its
environment at switch points. The consistency relation should be preserved under the environment
transitions allowed in the rely condition. So the key to define the local simulation is to define a
proper consistency relation and proper rely/guarantee conditions.

Footprint consistency. As in CompCert, the consistency relation require that the source and the
target generate the same external events. In addition, we also require that the target has the same or
smaller footprints than the source, which is important to ensure DRF-preservation. Recall that the
memory accessible by a thread ti consists of two parts, the shared memory S and the local memory
allocated from Fi , as shown in Fig. 4. DRF informally requires that the threads never access the
shared memory in S at the same time where at least one such access is a write.

We introduce the triple µ below to record the key information about the shared memory at the
source and the target.

µ
def
= (S, S, f) where S, S ∈ P(Addr) and f ∈ Addr⇀ Addr

Here S and S specify the shared memory locations at the source and the target respectively. The
partial mapping f maps locations at the source level to those at the target. We require µ to be
well-formed, defined as wf(µ) in Fig. 8. It says that the domain of f is S, f is injective, and maps
shared locations (in S) to shared locations (in S). Here f {{S}} returns the set of target locations that
are mapped from locations in S.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Anon.

f {{S}}
def
= {l ′ | ∃l . (l ∈ S) ∧ f (l) = l ′} f |S

def
= {(l , f (l)) | l ∈ (S ∩ dom(f))}

wf(µ) iff injective(f) ∧ dom(f) = S ∧ f {{S}} ⊆S where µ = (S, S, f)

FPmatch(µ,∆,δ) iff (δ .rs ∩ S ⊆ f {{∆.rs}}) ∧ (δ .ws ∩ S ⊆ f {{∆.ws}}) where µ = (S, S, f)

closed(S, Σ) iff cl(S, Σ) ⊆ S

cl(S, Σ)
def
=

⋃
k clk (S, Σ) , where clk (S, Σ) is inductively defined:

cl0(S, Σ)
def
= S clk+1(S, Σ)

def
= {l ′ | ∃l . (l ∈ clk (S, Σ)) ∧ Σ(l) = l ′}

initM(φ, ge, Σ,σ) iff ge⊆dom(Σ) ∧ closed(dom(Σ), Σ) ∧ dom(σ)=φ{{dom(Σ)}} ∧ Inv(φ, Σ,σ)

HG(∆, Σ′,F,S) iff ∆ ⊆ (F∪S) ∧ closed(S, Σ′)

LG(µ, (δ ,σ ′, F), (∆, Σ′)) iff δ ⊆ (F∪µ .S) ∧ closed(µ .S,σ ′) ∧ FPmatch(µ,∆,δ) ∧ Inv(µ . f , Σ′,σ ′)

R(Σ, Σ′,F,S) iff (Σ
F
=== Σ′) ∧ closed(S, Σ′) ∧ forward(Σ, Σ′)

Rely(µ, (Σ, Σ′,F), (σ ,σ ′, F)) iff R(Σ, Σ′,F, µ .S) ∧ R(σ ,σ ′, F , µ .S) ∧ Inv(µ . f , Σ′,σ ′)

Inv(f , Σ,σ) iff ∀l , l ′. (l ∈ dom(Σ) ∧ f (l) = l ′) =⇒ (l ′ ∈ dom(σ) ∧ Σ(l)
f
↪→ σ (l ′))

v1
f
↪→ v2 iff (v1 < Addr) ∧ (v1 = v2) ∨ (v1,v2 ∈ Addr ∧ f (v1) = v2)

Fig. 8. Footprint Matching and Rely/Guarantee Conditions in Our Simulation

Then, given footprints ∆ and δ , we define their consistency with respect to µ as FPmatch(µ,∆,δ)
in Fig. 8. It says the shared locations in δ must be contained in ∆, modulo the mapping µ . f . We
only consider the shared locations in µ .S because accesses of local memory would not cause races.

Rely/guarantee conditions. We use rely and guarantee conditions to specify the module interaction
protocols. One of the most important protocol is to enforce the view of accessibility of shared and
local memory in Fig. 4. More specifically, when the execution of a module switches to external
modules, it expects them to keep its local memory (in F) intact. In addition, although the external
modules may update the shared memory S, they must preserve certain properties of S. One
important property is that S cannot contain memory pointers pointing to local memory cells in
any Fi 1. Otherwise a thread tj can update the local memory in Fi by tracing the pointers in S . This
requirement is formalized as closed(S, Σ) in Fig. 8, which says the closure of addresses reachable
from Smust be no bigger than S. We encode these requirements in the rely condition, and guarantee
conditions are defined correspondingly to ensure the rely is satisfied.
We define the module-local downward simulation (sl, ge,γ) 4φ (tl, ge′,π) below, which relates

the executions of the source module (sl, ge,γ) and the target module (tl, ge′,π). The injective
function φ maps source addresses to the target ones.

Definition 4 (Module-Local Downward Simulation).
(sl, ge,γ) 4φ (tl, ge′,π) iff for all f, k, Σ, σ , F, F , and µ = (dom(Σ), dom(σ),φ |dom(Σ)),
if sl.InitCore(γ , f)=k, φ{{ge}}=ge′, initM(φ, ge, Σ,σ), and F∩dom(Σ) = F∩dom(σ) = ∅,
then there exist κ and i ∈index such that tl.InitCore(π , f) = κ, and

(F, (k, Σ), emp) 4i
µ (F , (κ,σ), emp),

where (F, (k, Σ),∆) 4i
µ (F , (κ,σ),δ), is defined in Def. 5 below.

It says that if we take any function entry f and the corresponding initial core states k and κ at the
source and the target respectively, then with any states (Σ and σ) and free lists (F and F) satisfying

1 This means we do not allow escape of pointers pointing to stack variables.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

1:15

some initial constraints, we can establish the simulation (F, (k, Σ), emp) 4i
µ (F , (κ,σ), emp), relating

the local module configurations, which is defined in Def. 5 and is explained below. Here we require
the initial states Σ and σ be related through initM defined in Fig. 8. The last condition in initM is
the invariant Inv defined at the bottom of Fig. 8. It says that the location f (l) must be in dom(σ) if
l is in dom(Σ), and the memory contents Σ(l) and σ (f (l)) must be equal modulo µ . f .

Definition 5. We define (F, (k, Σ),∆0) 4i
µ (F , (κ,σ),δ0) as the largest relation such that, whenever

(F, (k, Σ),∆0) 4i
µ (F , (κ,σ),δ0), then the following are true:

(1) for all k′, Σ′ and ∆, if F ⊢ (k, Σ) τ
7−→
∆

(k′, Σ′) and (∆0∪∆) ⊆ (F∪µ .S),
then one of the following holds:

(a) ∃j < i . (F, (k′, Σ′),∆0∪∆) 4
j
µ (F , (κ,σ),δ0), or

(b) there exist κ ′, σ ′, δ and j such that the following are true:
(i) F ⊢ (κ,σ)

τ
7−→
δ
+(κ ′,σ ′);

(ii) (δ0∪δ) ⊆ (F∪µ .S) and FPmatch(µ,∆0∪∆,δ0∪δ); and
(iii) (F, (k′, Σ′),∆0∪∆) 4

j
µ (F , (κ ′,σ ′),δ0∪δ).

(2) for all k′ and ι, if F ⊢ (k, Σ) ι
7−→
emp

(k′, Σ), ι , τ , and HG(∆0, Σ,F, µ .S),
then there exist κ ′, δ , σ ′ and κ ′′ such that the following are true:

(a) F ⊢ (κ,σ)
τ
7−→
δ
∗(κ ′,σ ′), and F ⊢ (κ ′,σ ′)

ι
7−→
emp

(κ ′′,σ ′), and
(b) LG(µ, (δ0∪δ ,σ ′, F), (∆0, Σ)), and
(c) for all σ ′′ and Σ′, if Rely(µ, (Σ, Σ′,F), (σ ′,σ ′′, F)), then there exists j such that

(F, (k′, Σ′), emp) 4j
µ (F , (κ ′′,σ ′′), emp).

The simulation (F, (k, Σ),∆0) 4i
µ (F , (κ,σ),δ0) carries ∆0 and δ0, the footprints accumulated

until now at the source and the target, respectively. The definition follows the diagram in Fig. 1(d).
For every τ -step in the source (case 1), if the newly generated footprints and the accumulated
∆0 are in scope (i.e. every location must either be from the freelist space F of current thread, or
from the shared memory µ .S), then the step should correspond to zero or multiple τ -steps in the
target, and the simulation holds over the resulting states with the accumulated footprints and a
new index j . Here we use ∆ as a shorthand for (∆.rs ∪ ∆.ws). If the source step corresponds to zero
target step (case 1-a), the index j must be strictly smaller than i . Here the indices i and j belong to a
well-founded set index that has no infinite decreasing sequences. The use of a smaller index j in
this case ensures non-terminating source module can only be simulated by non-terminating target.

If the source step corresponds to at least one target steps (case 1-b), the index j can be arbitrary.
In this case we require the footprints at the target are also in scope, and they must be consistent
with the source level footprints (see our explanation of FPmatch before). The accumulation of
footprints allows us to establish FPmatch for compiler optimizations that reorder the instructions.

At the switch points when the source generates a non-silent message ι (case 2), if the footprints
and states satisfy HG, the target must be able to generate the same ι (after zero or multiple silent
steps), and the accumulated footprints and the state satisfy LG. As defined in Fig. 8, both HG and
LG require the footprints are in scope and the shared memory is closed. LG additionally requires
the footprints at the target and the source satisfy FPmatch, and the states satisfy Inv.

One may wonder if it is possible to check FPmatch at the switch points only. However, executions
of non-terminating modules would never reach a switch point. That is why we have to also require
FPmatch during internal τ -steps (case 1).
At the switch points we also need to consider the interaction with the environment (i.e. other

modules or threads). For any environment steps at the source and the target, if they satisfy the rely

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Anon.

condition, then the simulation holds over the new states, with some index j and empty footprints —
Since the effects of the current thread have been made visible to the environments at the switch
point, we can clear the accumulated footprints. The rely condition is defined in Fig. 8. As explained
before, it requires the local memory is untouched, the shared memory is closed, and the domain of
states is not reduced (see the definition of forward in Fig. 5). Also it requires that the invariant Inv
be preserved over the new states at the source and the target.

Note that each case in Def. 5 has prerequisite about the source level footprints (e.g. the footprints
are in scope or satisfy HG). On the one hand, this makes the simulation weak and easy to prove.
We do not need to prove these requirements indeed hold for each compilation phase since they
are premises. On the other hand, after we apply transitivity of the simulation and prove that the
target generated after the multi-phase compilation simulates the source, we need to additionally
prove that these requirements indeed hold at the source level, to make the simulation meaningful
instead of being vacuously true. Following the approach by Stewart et al. [2015], we formalize these
requirements separately as ReachClose (Def. 7) in the next subsection.
Our simulation is transitive. One can decompose the whole compiler correctness proofs into

proofs for individual compilation phases.
Lemma 6 (Transitivity). ∀sl, sl′, tl,γ ,γ ′,π .
if (sl, ge,γ) 4φ (sl′, ge′,γ ′) and (sl′, ge′,γ ′) 4φ ′ (tl, ge′′,π), then (sl, ge,γ) 4φ ′◦φ (tl, ge′′,π).

5.2 Compositionality and the Non-Preemptive Global Simulation
The whole program downward simulation P̂ 4φ P̂ relates the execution of the whole source program
P and target program P . It serves as an intermediate result for proving event trace refinement and
data-race-freedom preservation, as shown in Fig. 2.

Due to space limit, we omit the definition of the whole program simulation, which is similar to
the module local simulation, except the case for environment interference (rely steps), which is
unnecessary for whole program simulation. Every source step should correspond to multiple target
steps. As in module local simulation, we always require the target footprints matches those of the
source, defined as FPmatch. Also the footprint should always be in scope. As a special requirement
for the whole program simulation, we always require the source and the target do lock-step context
switch and they always switch to the same thread.

Compositionality. Following Liang et al. [2012], the module-local simulations could be composed
to derive the whole-program simulation by proving the Rely condition of a module is guaranteed
by other modules’ guarantee conditions HG and LG. However, as explained at the end of Sec. 5.1,
in our module-local simulation, LG is established if the source module satisfies HG. We require that
HG always hold during the execution of the source, and formulate this requirement as ReachClose
in Def. 7. It is a simplified version of the reach-close concept by Stewart et al. [2015] (simplified
because we do not allow the leak of local stack pointers into the shared memory).
Definition 7 (Reach Closed Module). ReachClose(sl, ge,γ) iff , for all f, k, Σ, F and S,
if sl.InitCore(γ , f) = k, ge ⊆ S = dom(Σ), F∩S = ∅, and closed(S, Σ), then RC(F,S, (k, Σ)).
Here RC is defined as the largest relation such that, whenever RC(F,S, (k, Σ)), then for all Σ′

such that R(Σ, Σ′,F,S), and for all k′, Σ′, Σ′′, ι and ∆ such that F ⊢ (k, Σ′)
ι
7−→
∆

(k′, Σ′′), we have
HG(∆, Σ′′,F,S), and RC(F,S, (k′, Σ′′)).
The relation RC(F,S, (k, Σ)) essentially says during every step of the execution of (k, Σ), HG

always holds over the resulting footprints ∆ and states, even with possible interference from the
environment, as long as the environment steps satisfy the rely condition R defined in Fig. 8.
Assuming all source modules are ReachClose, we can prove the Compositionality Lemma.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

1:17

Lemma 8 (Compositionality, 5 in Fig. 2). For any f1, . . . , fn ,φ, Γ = {(sl1, ge1γ1), . . . , (slm , gemγm)},
Π = {(tl1, ge′1,π1), . . . , (tlm , ge

′
mπm)} if

∀i ∈ {1, . . . ,m}.wd(sli) ∧ wd(tli) ∧ ReachClose(sli , gei ,γi) ∧ (sli , gei ,γi) 4φ (tli , ge′i ,πi) ,

then let Γ in f1 | . . . | fn 4φ let Π in f1 | . . . | fn .

5.3 Flip of the Non-Preemptive Global Simulation
As explained in Sec. 2.2, with determinism of the target modules, one is able to flip the downward
simulation to derive upward simulation for safe source programs. Then the upward event trace
refinement follows the upward simulation.
We define the whole program upward simulation as P̂ 6φ P̂. Due to space limit, we omit its

concrete definition here. It is similar to the downward simulation P̂ 4φ P̂ , with the positions of
source and target swapped. Note that we do not flip the FPmatch condition, since we always require
footprint of target program being a refinement of the footprint of the source program, in order to
prove DRF of the target program. Correspondingly, the address mapping φ is not flipped either.

Definition 9 (Deterministic Languages). det(tl) iff, for all configuration ϕ in tl (see the definition
of ϕ in Fig. 3), and for all F , F ⊢ ϕ

ι1
7−→
δ1

ϕ1 ∧ F ⊢ ϕ
ι2
7−→
δ2

ϕ2 =⇒ ϕ1 = ϕ2 ∧ ι1 = ι2 ∧ δ1 = δ2.

With determinism of the target module languages, we are able to prove Lemma 10.

Lemma 10 (Flip, 4 in Fig. 2). For any f1, . . . , fn , ge, φ, Γ = {(sl1, ge1,γ1), . . . , (slm , gem ,γm)},
Π = {(tl1, ge′1,π1), . . . , (tlm , ge

′
m ,πm)}, if ∀i . det(tli), and

let Γ in f1 | . . . | fm 4φ let Π in f1 | . . . | fm ,
then let Π in f1 | . . . | fm 6φ let Γ in f1 | . . . | fm .

Soundness. The non-preemptive global simulation ensures the refinement. Before presenting
the soundness lemma, we first lift the refinement (P , Σ) ⊑ (P,σ) (see Def. 2) to P ⊑φ P as follows.
Similarly, (P̂ , Σ) ⊑ (P̂,σ) is lifted to to P̂ ⊑φ P̂.

P ⊑φ P iff ∀Σ,σ . initM(φ,GE(P.Γ), Σ,σ) =⇒ (P ,σ) ⊑ (P, Σ)

where GE(
{
(tl1, ge1,π1), . . . , (tlm , gem ,πm)

}
)

def
=

m⋃
i=1

gei

Lemma 11 (Soundness, 3 in Fig. 2). If P̂ 6φ P̂, then P̂ ⊑φ P̂.

6 DATA-RACE-FREEDOM
Informally, a data race occurs when two threads concurrently access the same memory location
and at least one of the accesses is a write. A program is DRF if it never generates data races in all
possible executions. Below we first define the conflict of footprints.

δ1 ⌢ δ2 iff (δ1.ws ∩ δ2 , ∅) ∨ (δ2.ws ∩ δ , ∅)

(δ1,d1)⌢ (δ2,d2) iff (δ1 ⌢ δ2) ∧ (d1 = 0 ∨ d2 = 0)
Two footprints δ1 and δ2 are conflicting, denoted as δ1 ⌢ δ2, if the write set ws of one of them
overlaps with the read set or the write set of the other. Recall that, when used as a set, δ represents
δ .rs ∪ δ .ws. Since we do not treat accesses of the same memory location inside atomic blocks as a
race, we instrument a footprint δ with the atomic bit d to record whether the footprint is generated
inside an atomic block (d = 1) or not (d = 0). Two instrumented footprints (δ1,d1) and (δ2,d2) are
conflicting if δ1 and δ2 are conflicting and at least one of d1 and d2 is 0.

We formulate data races in Fig. 9(a) for preemptive semantics. A program P with initial memory
state σ is racy ((P ,σ) Z=⇒ Race) if its execution reaches a program configurationW ′ that steps to

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Anon.

(P ,σ)
load
===⇒W W =⇒∗W ′ W ′ Z=⇒ Race

(P ,σ) Z=⇒ Race

t1 , t2 (δ1,d1)⌢ (δ2,d2) predict(W , t1, (δ1,d1)) predict(W , t2, (δ2,d2))

W Z=⇒ Race
Race

W = (T , _, 0,σ) T (t) = (F ,κ) F ⊢ (κ,σ)
τ
7−→
δ

(κ ′,σ ′)

predict(W , t, (δ , 0)) Predict-0

W = (T , _, 0,σ) T (t) = (F ,κ) F ⊢ (κ,σ)
EntAtom
7−−−−−−−→

emp
(κ ′,σ) F ⊢ (κ ′,σ)

τ
7−→
δ
∗(κ ′′,σ ′′)

predict(W , t, (δ , 1)) Predict-1

(a) Data Race in Preemptive Semantics

(P̂ ,σ) :
load
===⇒ Ŵ Ŵ :=⇒∗Ŵ ′ Ŵ ′ :Z=⇒ Race

(P̂ ,σ) :Z=⇒ Race

(P̂ ,σ) :
load
===⇒ Ŵ t1 , t2 (δ1,d1)⌢ (δ2,d2) NPpredict(Ŵ , t1, (δ1,d1)) NPpredict(Ŵ , t2, (δ2,d2))

(P̂ ,σ) :Z=⇒ Race

Ŵ :
o
==⇒
emp

Ŵ ′ o , τ t1 , t2 (δ1,d1)⌢ (δ2,d2)

NPpredict(Ŵ ′, t1, (δ1,d1)) NPpredict(Ŵ ′, t2, (δ2,d2))

Ŵ :Z=⇒ Race
Racenp

Ŵ = (T , _,d,σ) T (t) = (F ,κ) F ⊢ (κ,σ)
τ
7−→
δ
∗(κ ′,σ ′) d(t) = d

NPpredict(Ŵ , t, (δ ,d))
Predictnp

(b) Data Race in Non-Preemptive Semantics

Fig. 9. Predictive Semantics for Defining Race

Race (W ′ Z=⇒ Race). In the Race rule,W steps to Race if there are conflicting footprints of two
threads predicted from the current configuration (predict(W , t, (δ ,d))). The predictions are only
performed at the switch points, i.e., the program points outside atomic blocks where d = 0, since
the intermediate states inside atomic blocks are not visible to other threads. Footprints of steps
before reaching the next switch point are able to be predicted using the rules Predict-0 or Predict-1.
Predict-0 is used for predicting footprint of the next τ -step of thread t, where there is a switch
point (in preemptive semantics) right after the step. Predict-1 applies if thread t enters an atomic
block, the footprint generated by any number of steps inside the atomic block can be predicted.
Note that we do not insist on predicting the footprint generated by the execution of the whole
atomic block because the code inside the atomic block may be nonterminating.
A program P with an initial state σ is DRF if it never steps to Race. A program P is DRF if for

any proper initial state σ , DRF(P ,σ):

DRF(P ,σ) iff ¬((P ,σ) Z=⇒ Race)
DRF(P) iff ∀σ . (GE(P .Π) ⊆ locs(σ)) ∧ (cl(dom(σ),σ) = dom(σ)) =⇒ DRF(P ,σ)

Data races in the non-preemptive semantics ((P̂ ,σ) :Z=⇒ Race) are defined in Fig. 9(b). Similar to
the definition for the preemptive semantics, a non-preemptive program configuration Ŵ steps to

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

1:19

Race (Ŵ :Z=⇒ Race) if two threads are predicted having conflicting footprints, as shown in rule
Racenp. Predictions are made only at the switch points of non-preemptive semantics (Ŵ :

o
==⇒
emp

Ŵ ′

where o , τ), i.e., program points at atomic block boundaries, after an observable event, or after
thread termination. The prediction rule Predictnp is a unified version of its counterpart Predict-0
and Predict-1, where d indicates whether the predicted steps are inside an atomic block. Similar to
the Predict-1 rule, we do not insist on predicting the footprint generated by the execution reaching
the next switch point, because the code segments between switch points could be nonterminating.
In addition to at the switch points, we also need to be able to perform a prediction at the initial
state as well (the second rule in Fig. 9), because the first executing thread is non-deterministically
picked at the beginning, which has similar effect as thread switching.
A program P̂ with the initial state σ is NPDRF if it never steps to Race, and a program P̂ is

NPDRF if, for any proper initial state σ , NPDRF(P̂ ,σ):

NPDRF(P̂ ,σ) iff ¬((P̂ ,σ) :Z=⇒ Race)
NPDRF(P) iff ∀σ . (GE(P .Π) ⊆ locs(σ)) ∧ (cl(dom(σ),σ) = dom(σ)) =⇒ NPDRF(P ,σ)

Note that defining NPDRF is not for studying the absence of data races in the non-preemptive
semantics (which is probably not very interesting since the execution is non-preemptive anyway).
Rather, it is intended to serve as an equivalent notion of DRF but formulated in the non-preemptive
semantics. The following lemma shows the equivalence.

Lemma 12 (Equivalence between DRF and NPDRF, 6 and 8 in Fig. 2).
For any f1, . . . , fm , σ , Π = {(tl1,π1), . . . , (tlm ,πm)} such that ∀i . wd(tli),

DRF(let Π in f1 ∥ . . . ∥ fm ,σ) ⇐⇒ NPDRF(let Π in f1 | . . . | fm ,σ) .

As mentioned in Sec. 2, we need the compilation to preserve DRF of the source, which should be
ensured by our upward whole program simulation P̂ 6φ P̂. The following Lemma 13 shows the
simulation preserves NPDRF of the source. Together with Lemma 12, we know it preserves DRF.

Lemma 13 (NPDRF Preservation, 7 in Fig. 2).
For any P̂, P̂ , φ, Σ and σ , if P̂ 6φ P̂, initM(φ,GE(P̂.Γ), Σ,σ), and NPDRF(P̂, Σ), then NPDRF(P̂ ,σ).

The lemma below shows the semantics equivalence for DRF programs.

Lemma 14 (Equivalence between Preemptive and Non-Preemptive semantics, 1 and 2 in Fig. 2).
For any Π, f1, . . . , fm , σ , if DRF(let Π in f1 ∥ . . . ∥ fm ,σ), then

(let Π in f1 | . . . | fm ,σ) ≈ (let Π in f1 ∥ . . . ∥ fm ,σ) .

7 THE FINAL THEOREM
Putting all the previous results together, we are able to prove our final theorem, i.e., certified
sequential compositional compilers could correctly compile data-race-free concurrent programs by
compiling each module separately.
Before presenting the theorem, we first model a sequential compiler SeqComp as a code trans-

formation function CodeT with a data transformation function φ. Here φ maps the addresses
in the global environments ge. It may not be an identity function when the compiler performs
optimizations on global environments, such as eliminating unused global variables.

SeqComp ::= (CodeT,φ) CodeT ∈ Module⇀ Module φ ∈ Addr⇀ Addr

As the key proof obligation, we need to verify that each SeqComp satisfies Correct. We define
Correct as follows using our footprint-preserving module-local simulation.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Anon.

Definition 15 (Sequential Compiler Correctness). Correct(SeqComp, sl, tl) iff
∀γ ,π , ge, ge′. SeqComp.CodeT(γ) = π ∧ SeqComp.φ{{ge}} = ge′ =⇒ (sl, ge,γ) 4SeqComp.φ (tl, ge′,π) .

The desired correctness property GCorrect of concurrent program compilation is the semantics
preservation of whole programs, i.e., every target concurrent program is an event-trace refinement
of the source. We formulate GCorrect in Def. 16. Here we require all the sequential compilers to
agree on the transformation φ of global environments (see Def. 16(1)).

Definition 16 (Concurrent Compiler Correctness).
GCorrect((SeqComp1, sl1, tl1), . . . , (SeqCompm , slm , tlm)) iff
for any f1, . . . , fn , Γ = {(sl1, ge1,γ1), . . . , (slm , gem ,γm)}, Π = {(tl1, ge′1π1), . . . , (tlm , ge

′
m ,πm)}, φ,

if
(1) ∀i ∈ {1, . . . ,m}. (SeqCompi .CodeT(γi) = πi) ∧ (SeqCompi .φ = φ) ∧ injective(φ),
(2) DRF(let Γ in f1 ∥ . . . ∥ fn), and Safe(let Γ in f1 ∥ . . . ∥ fn),
(3) ∀i ∈ {1, . . . ,m}. ReachClose(sli , gei ,γi),

then let Γ in f1 ∥ . . . ∥ fn ⊒φ let Π in f1 ∥ . . . ∥ fn .

Our final theorem is then formulated as Thm. 17. It says if a set of sequential compilers are
certified to satisfy our correctness obligation Correct, the source and target languages sli and tli
are well-defined, and the target languages are deterministic, then the sequential compilers as a
whole is GCorrect for compiling concurrent programs. The proof simply applies the lemmas that
correspond to 1 - 8 in Fig. 2.

Theorem 17 (Final Theorem).
For any SeqComp1, . . . , SeqCompm , sl1, . . . , slm , tl1, . . . , tlm such that for any i ∈ {1, . . . ,m} we
have wd(sli), wd(tli), det(tli), and Correct(SeqCompi , sli , tli), then

GCorrect((SeqComp1, sl1, tl1), . . . , (SeqCompm , slm , tlm)).

8 FRAMEWORK INSTANTIATION AND COMPCERT BACKEND VERIFICATION
We apply our compiler verification framework to prove the correctness of CompCert-3.0.1 x86
backend [Leroy 2009a; CompCert Developers 2017] for compositional compilation of DRF programs.
To demonstrate the support of cross-language inter-module interaction, we provide synchronization
modules implemented in x86 assembly and link them with the modules compiled by CompCert.

8.1 Language Instantiations
Below we instantiate our abstract languages as Cminor and x86 assembly. Cminor is a low-level
imperative language, and serves as the source languge of several compiler backend of the CompCert
compiler. Although it is a sequential language, we can write concurrent Cminor programs by
parallel compositions of sequential Cminor threads. Inter-thread synchronization can be achieved
through the external call mechanism to call functions outside Cminor modules.
We give a tiny example in Fig. 10, where the synchronization functions sc_cas and sc_store

are implemented in a separate x86 module πx86 (see Fig. 10(b)). Their signatures have been exported
to Cminor in Fig. 10(a). These functions are similar to the C-11 SC-atomic primitives [Batty et al.
2011]. The function sc_cas tests if the value in the destination memory location (1st argument) is
the same with the expected value (2nd argument). If true it stores the new value (3rd argument)
into the destination address. The sc_store function simply stores the second argument to the
destination memory location (1st argument). Their implementation in Fig. 10(b) utilizes the lock-
prefixed instructions. With these external x86 functions, the Cminor program implements a simple
test-and-set lock and a counter inc that increments the shared variable x in the lock-protected

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1:21

void sc_store (int32_t *, int32_t)
int sc_cas (int32_t *, int32_t, int32_t)

(a) sc_atomic signatures

sc_store:
movl 4(%esp), %eax
movl 8(%esp), %ecx

lock xchgl %ecx, (%eax)
retl

sc_cas:
movl 4(%esp), %edx
movl 8(%esp), %eax
movl 12(%esp), %ecx

lock cmpxchgl %ecx, (%edx)
sete %al
retl

int32_t x = 0, l = 0;

int lock(){ return sc_cas(&l, 0, 1); }

void unlock(){ sc_store(&l, 0); }

void inc(){
int32_t tmp;
while(!lock());
tmp = x; x ++;
unlock();
print(tmp);

}
(b) sc_atomic x86 implementation, module πx86 (c) example Cminor module γC

Fig. 10. An example program with implementation of C11-like atomics

critical region and prints the old value of x. Here we present the Cminor program in C syntax. An
example whole program P is let {πx86,γC} in inc() ∥ inc().

The Cminor Language. The selected parts of our Cminor instantiation are represented in Fig. 11(a).
To instantiate our abstract language of Fig. 3, we instantiate the Module with the same syntax as
the CompCert Cminor languge. A core state κ is a pair of a local state c and an index N of type
N indicating the position of the next block in the freelist F to be allocated. Here F is defined as a
sequence of block numbers. The local state c is instantiated the same way as the Cminor interaction
semantics in Compositional CompCert [Stewart et al. 2015]. The InitCore function is also adapted
from Compositional CompCert, with the index N initialized to 0. We omit their definitions here.
The instantiation of the local transition semantics instruments Compositional CompCert’s

interaction semantics with footprints, which is determined by the memory locations (base-offset
pairs, following the CompCert block-based memory model) accessed in each step. For instance,
the allocation (e.g., for allocating stack frames) in our semantics takes the next available block
number (b = F (N)) as the base address and then increments N so that it points to the next available
block number in F . The memory σ is extended with the newly allocated memory cells, resulting in
σ {(b, 0) ; undef, . . . , (b,n − 1) ; undef}, where n is the size of allocated block. The write set of
the footprint includes all the addresses with base address b, and the read set is empty.

As we mentioned at the beginning of this subsection, Cminor does not support synchronization
operations within the language, therefore the operational semantics of Cminor does not generate
steps with labels EntAtom or ExtAtom.

x86 Assembly with lock-prefixed Instructions. Figure 11(b) presents the selected syntax and
key semantics components of x86 assembly with lock-prefixed instructions. In addition to the
instructions that are already implemented in CompCert, we introduce the lock-prefixed instructions
(lockxchg, lockxadd, lockcmpxchg) for synchronization.

The lock prefix asserts a lock# signal (or something alike in later IA-32 implementations),
which guarantees exclusive memory access while executing the accompanying instruction. The
behavior of lock-prefixed instructions could be modeled by our abstract language with EntAtom
and ExtAtom events. To implement the semantics of lock-prefixed instructions, we introduce a

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Anon.

(FList) F ::= b1 ::b2 :: . . . (Mem) σ ∈ Block⇀fin (N⇀ val)
(Block) b ∈ N+ (Core) κ ::= (c,N) (BIndex) N ∈ N

(a) Cminor instantiation

(Instr) c ::= mov rd , rs | Iadd rd , rs | call f | ret | . . .

| lock xchg l rs | lock xadd l rs | lock cmpxchg l rs
(Core) κ ::= (s,R) (Signal) s ::= none | locked | done

(Register) r ::= PC | SP | . . . (RegFile) R ∈ Register → Val

find_instr(ge,R(PC)) = lock xchg l rs

(ge, F) ⊢< (none,R),σ >
EntAtom
7−−−−−−−→

emp
< (locked,R),σ > (ge, F) ⊢< (done,R),σ >

ExtAtom
7−−−−−−−→

emp
< (none,R),σ >

find_instr(ge,R(PC)) = lock xchg l rs δ = ({l}, {l}) R′ = R{PC ; (PC + 1), rs ; σ (l)}

(ge, F) ⊢< (locked,R),σ >
τ
7−−→
δ
< (done,R′),σ {l ; R(rs)} >

(b) Pseudo-x86 Assembly

Fig. 11. Language instantiations

Cminor CminorSel
Selection

RTL
RTLgen

RTL
Tailcall, Renumber

LTL

Allocation

Linear
Linearize

Mach
Stacking

x86 assembly
Asmgen

Fig. 12. Proved CompCert Compilation Passes

Signal flag in the core state κ. The flag has three possible values: none means a normal state with
no lock prefix asserted; locked means a lock# signal is asserted; and done indicates that we have
finished executing the accompanying instruction and is about to unset the lock# signal. We give
the operational semantics rules for lockxchg as an example at the bottom of Fig 11(b).

8.2 Adapting CompCert Compiler
As mentioned at the beginning of this section, we adapt the original CompCert compiler passes for
compiling Cminor modules to x86 assembly. The compilation passes (shown in Fig. 12) include
all translation passes and two optimization passes (Tailcall and Renumber), which are proved to
be correct with respect to our correctness judgement. Other optimization passes have not been
proved yet and are left as future work.

Given the program let {γ1, . . . ,γl ,πl+1, . . . ,πm} in f1 ∥ . . . ∥ fn consisting of Cminor modules
γi and x86 modules πj (we omit the corresponding language definitions sl and ge in the modules to
simplify the presentation), the compilation Comp is formulated as

Comp(let {γ1, . . . ,γl ,πl+1, . . . ,πm} in f1 ∥ . . . ∥ fn)
def
=

let {CminorTrans(γ1), . . . , CminorTrans(γl), IdTrans(πl+1), . . . , IdTrans(πm)} in f1 ∥ . . . ∥ fn

where CminorTrans is the adapted compiler consisting of the original CompCert backend passes,
and IdTrans is the identity translation which returns the x86 assembly module unchanged. The
state transition function φ of both compilers are instantiated as identity function.

We have proved that CminorTrans satisfies our Correct condition:

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1:23

Lemma 18 (CminorTrans Correctness). Correct(CminorTrans, Cminor, x86asm).

We also prove the correctness of IdTrans, the well-definedness of Cminor and the x86 assembly
language, and the determinism of x86 assembly. Together with our framework’s final theorem
(Theorem 17), we proved the following result:

Theorem 19 (Compilation Correctness).
GCorrect((CminorTrans, Cminor, x86asm), (IdTrans, x86asm, x86asm)) .

To prove Lemma 18, we try to reuse as much the original CompCert correctness proofs as
possible, but have encountered two major challenges: (1) Many CompCert lemmas rely on the
specific definition of the CompCert memory model, which is different from ours; and (2) Footprints
are new in our setting and it seems we need to re-prove most existing lemmas to support footprints.
Below we explain these challenges and show our efforts to reuse CompCert proofs.

8.2.1 Reusing CompCert Proofs by Converting Memory Layout. The memory layout in our se-
mantics is different from the CompCert memory model. CompCert memory maintains a nextblock
field indicating the next block to be allocated. Starting from 0, nextblock is incremented after each
allocation. Therefore the sequence of memory allocations in an execution get consecutive natural
numbers as block numbers. As a consequence, b is a valid block number if b < nextblock. Also a
block with a smaller block number must be allocated earlier than those with bigger block numbers.

But these assumptions do not hold in our model. As we explain in Sec. 8.1, each allocation takes
the block number F (N) and then increments the index N , but the block numbers on F are not
consecutive. Actually we do not even assume an increasing order of the block numbers. Recall that
in our model each thread has its own freelist F , which can be an infinite sequence of block numbers.
Also the freelists of different threads must be disjoint. This means we cannot make a freelist F a
infinite sequence of consecutive natural numbers to directly simulate CompCert.
Unfortunately, CompCert correctness proofs heavily rely on its allocation strategy, making it

difficult for us to reuse the proofs. For instance, the check of block validity is used extensively
in CompCert’s fundamental libraries (e.g., Memory.v for memroy operations and their properties,
and Separation.v for separation logic style predicates) and the compilation correctness proofs.
Modifying the validity check would affect most of these proofs.

Lifting simulations to CompCert memory model. Although our memory model is different from
that of CompCert, we can define a bijection between memories under the two models. As a result,
the behaviors of a thread under our model are equivalent to its behaviors under CompCert model,
and our module-local simulation can be derived from a simulation based on the CompCert model.
In detail, we first define auxiliary semantics for the source and target languages based on

CompCert memory model. We denote the CompCert memory by the hat-notation Σ̂ and σ̂ , and the
corresponding core states under CompCert memory model by k̂ and κ̂. The lemmas below show
the correspondence between our original semantics and the auxiliary semantics.

Lemma 20 (Lifting Cminor). For any Cminormodule (ge,γ) and function entry f, for any k, Σ, Σ̂, if
InitCore(γ , f) = k and ge ⊆ dom(Σ), then there exist k̂, Σ̂, µs and f such that µs = (dom(Σ), dom(Σ̂), f)

and (F, (k, Σ)) 4µs (k̂, Σ̂). Here f is a bijection from dom(Σ) to dom(Σ̂).

It says that, starting from some well-formed initial state, the execution in our semantics is
simulated by the execution in the auxiliary semantics. Here (F, (k, Σ)) 4µs (k̂, Σ̂) is defined as a
simple lock-step simulation relation, where the corresponding steps in the two semantics generate
footprints ∆ and ∆̂ such that FPmatch(µs ,∆, ∆̂) holds.

The next lemma shows simulation in the reverse direction in the target language (x86 assembly).

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Anon.

Lemma sel_expr_correct:
forall sp e m a v fp,
Cminor.eval_expr sge sp e m a v ->
Cminor.eval_expr_fp sge sp e m a fp ->
forall e' le m', env_lessdef e e' -> Mem.extends m m' ->
exists v', exists fp',
eval_expr tge sp e' m' le (sel_expr a) v' /\ Val.lessdef v v'
/\ eval_expr_fp tge sp e' m' le (sel_expr a) fp' /\ FP.subset fp' fp.

Fig. 13. Coq code example

Library Code Spec Proof
CompCert Ours CompCert Ours

Selectionproof.v 336 500 647 780
RTLgenproof.v 428 543 821 857
Tailcallproof.v 173 328 275 403
Renumberproof.v 86 245 117 356
Allocproof.v 704 785 1410 1696
Linearizeproof.v 236 371 349 732
Stackingproof.v 730 1154 1108 2015
Asmgenproof.v 208 881 571 583
Compositionality (Lemma 8) 580 2249
DRF preservation (Lemma 13) 358 1142
Semantics equivalence (Lemma 14) 1529 4742
Lifting (Theorem 22) 828 1795

Fig. 14. Lines of code (using coqwc) for selected parts of the Coq implementation

Lemma 21 (Lifting x86asm). For any x86asmmodule (ge,π) and function entry f, for any κ,σ , σ̂ , if
InitCore(π , f) = κ and ge ⊆ dom(σ), then there exist κ̂, σ̂ , µt and f such that µt = (dom(σ̂), dom(σ), f)
and (κ̂, σ̂) 4µt (F , (κ,σ)). Here f is a bijection from dom(σ̂) to dom(σ).

Theorem 22 below says we can derive the local simulation (F, (k, Σ),∆) 4µ (F , (κ,σ),δ) by
proving the simulation (k̂, Σ̂, ∆̂) 4µ̂ (κ̂, σ̂ , δ̂) instead. Here (k̂, Σ̂, ∆̂) 4µ̂ (κ̂, σ̂ , δ̂) is the same as our
local simulation, except using CompCert memory and the corresponding core states instead of
our memory with freelists. As a result, most CompCert libraries and compilation proofs could be
reused without modification.

Theorem 22 (Lifting). If (F, (k, Σ)) 4µs (k̂, Σ̂), FPmatch(µs ,∆, ∆̂), (κ̂, σ̂) 4µt (F , (κ,σ)),
FPmatch(µt , δ̂ ,δ), and µ = µt◦µ̂◦µs , then (k̂, Σ̂, ∆̂) 4µ̂ (κ̂, σ̂ , δ̂) =⇒ (F, (k, Σ),∆) 4µ (F , (κ,σ),δ) .
Here µ2 ◦ µ1 = (S1, S2, f2◦ f1), if µ1 = (S1, S, f1) and µ2 = (S, S2, f2).

8.2.2 Footprint Preservation. Although CompCert does not model footprints, many of the defi-
nitions and lemmas can be slightly modified to support footprint preservation. For instance, the
Selection phase selects appropriate machine operations for operations in Cminor, and genera-
tes CminorSel code. One of the key lemmas, sel_expr_correct, is shown in Fig. 13, with our
newly-added code highlighted as blue texts. It says the selected expression would evaluate to a
value refined by the Cminor expression. We simply extends the lemma by requiring the selected
expression has smaller footprint while evaluating on related memory.
Adapting the simulation invariants (the match_state relations) in CompCert proofs is also

straightforward. We just need to instrument match_state with footprint relations.

8.3 Proof Efforts in Coq
Statistics of our Coq implementation and proofs are depicted in Fig 14. We can see that adapting
compilation correctness proofs from CompCert is relatively lightweight. For most phases our proofs

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1:25

arewithin 300 lines of codemore than the original CompCert proofs. The Stacking phase introduces
more additional proofs, mostly caused by arguments marshalling for supporting cross-language
linking, following Compositional CompCert. In our experience, adapting CompCert’s original
compilation proofs to our settings takes less than one person week per translation phase (except
for Stacking). For simpler phases such as Tailcallproof.v, Linearizeproof.v, Allocproof.v,
and RTLgenproof.v, it takes less than one person day per phase.
In contrast, implementing the framework and proving its correctness are much more chal-

lenging, which took us about 1 person year. In particular, proving the equivalence between the
non-preemptive and the preemptive semantics under the DRF assumption took us much more time
than expected, although it seems to be a well-known folklore theorem. The co-inductive proofs
there involve a large number of non-trivial cases of reordering threads’ execution.

9 RELATEDWORK
Compiler verification. There has been various work extending CompCert [Leroy 2009a] to support

separate compilation or concurrency. SepCompCert [Kang et al. 2016] extends CompCert with the
support of syntactical linking. Their approach requires all the compilation units be compiled by
CompCert. They do not support cross-language linking or concurrency as we do.
CompCertX [Gu et al. 2015] extends CompCert semantics with abstract layers for verified

separate compilation. It does not support general DRF concurrent program compilation as we do.
Compositional CompCert [Beringer et al. 2014; Stewart et al. 2015] introduces interaction se-

mantics to support cross-language interactions. Its module-linking theorem allows escape of stack
pointers, which we do not support. They also conjecture that their approach can be extended to
verify compositional compilation of well-synchronized concurrent programs. This work addresses
the key challenges to do so and proposes a verification framework to achieve this goal.

CompCertTSO [Ševčík et al. 2013] extends CompCert to compile concurrent C-like programs in a
relaxed memory model. It focuses on the correctness of a particular compiler and does not support
cross-language linking. Also there are two compilation phases whose proofs are not compositional.
Vellvm [Zhao et al. 2012, 2013] proves correctness of several optimization passes for sequential

LLVM programs. Perconti and Ahmed [2014] verify separate compilation by embedding languages
in a combined language. They do not support concurrency either. Ševčík [2011] studies safety of
a class of optimizations in concurrent settings using an abstract trace semantics. It is unclear if
his approach can be applied to verify general compilation. Lochbihler [2010] verifies a compiler
for concurrent Java programs. He requires the target and the source always be lock-step on heap
updates, which makes his simulation compositional but restricted. It is unclear how to apply his
approach to verify more complex compilers like CompCert.

Non-preemptive semantics and data-race-freedom. Non-preemptive (or cooperative) semantics has
been developed in various settings for various purposes (e.g., [Abadi and Plotkin 2009; Boudol 2007;
Li and Zdancewic 2007; Vouillon 2008; Yi et al. 2011]). Both Ferreira et al. [2010] and Xiao et al.[2018]
study the relationships between non-preemptive semantics and DRF, but they do not give any
mechanized proofs of termination-preserving semantics equivalence as in our work. DRFx [Marino
et al. 2010] proposes a concept called Region-Conflict-Freedom, which looks similar to our NPDRF,
but there is no formal operational formulation as we do.

Compilation validation. Validation is another technique to ensure correctness of compilation.
CompCert employs a verified validator [Rideau and Leroy 2010] for register allcation. More recently
Crellvm [Kang et al. 2018] is developed for verified credible compilation of LLVM IR. The work is
based on the Vellvm semantics with no support for concurrency. It is not clear how to apply the
validation techniques to concurrent settings.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Anon.

REFERENCES
Martin Abadi and Gordon Plotkin. 2009. A Model of Cooperative Threads. In Proceedings of the 36th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL ’09). ACM, New York, NY, USA, 29–40.
Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ Concurrency. In POPL.

55–66.
Lennart Beringer, Gordon Stewart, Robert Dockins, and Andrew W. Appel. 2014. Verified Compilation for Shared-Memory

C. In ESOP. 107–127.
Gérard Boudol. 2007. Fair Cooperative Multithreading. In CONCUR 2007 – Concurrency Theory, Luís Caires and Vasco T.

Vasconcelos (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 272–286.
Rodrigo Ferreira, Xinyu Feng, and Zhong Shao. 2010. Parameterized Memory Models and Concurrent Separation Logic. In

ESOP, Andrew D. Gordon (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 267–286.
Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong

Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In POPL. 595–608.
Cliff B. Jones. 1983. Tentative Steps Toward a Development Method for Interfering Programs. ACM Trans. Program. Lang.

Syst. 5, 4 (1983), 596–619.
Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis. 2016. Lightweight Verification of

Separate Compilation. In POPL. 178–190.
Jeehoon Kang, Yoonseung Kim, Youngju Song, Juneyoung Lee, Sanghoon Park, Mark Dongyeon Shin, Yonghyun Kim,

Sungkeun Cho, Joonwon Choi, Chung-Kil Hur, and Kwangkeun Yi. 2018. Crellvm: Verified Credible Compilation for
LLVM. In PLDI 2018. 631–645.

Xavier Leroy. 2009a. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107–115.
Xavier Leroy. 2009b. A Formally Verified Compiler Back-end. J. Autom. Reason. 43 (December 2009), 363–446. Issue 4.
Peng Li and Steve Zdancewic. 2007. Combining Events and Threads for Scalable Network Services Implementation and

Evaluation of Monadic, Application-level Concurrency Primitives. In PLDI ’07. 189–199.
Hongjin Liang, Xinyu Feng, and Ming Fu. 2012. A Rely-guarantee-based Simulation for Verifying Concurrent Program

Transformations. In POPL. 455–468.
Andreas Lochbihler. 2010. Verifying a Compiler for Java Threads. In ESOP. 427–447.
Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and Satish Narayanasamy. 2010. DRFX: A Simple

and Efficient Memory Model for Concurrent Programming Languages. In PLDI ’10. 351–362.
James T. Perconti and Amal Ahmed. 2014. Verifying an Open Compiler Using Multi-language Semantics. In Programming

Languages and Systems, Zhong Shao (Ed.). 128–148.
Silvain Rideau and Xavier Leroy. 2010. Validating Register Allocation and Spilling. In Compiler Construction, Rajiv Gupta

(Ed.). 224–243.
Jaroslav Ševčík. 2011. Safe optimisations for shared-memory concurrent programs. In PLDI. 306–316.
Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2013. CompCertTSO: A

Verified Compiler for Relaxed-Memory Concurrency. J. ACM 60, 3 (2013), 22.
Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. 2015. Compositional CompCert. In POPL.

275–287.
CompCert Developers. 2017. CompCert-3.0.1. http://compcert.inria.fr/release/compcert-3.0.1.tgz
Jérôme Vouillon. 2008. Lwt: A Cooperative Thread Library. In ML. 3–12.
Siyang Xiao, Hanru Jiang, Hongjin Liang, and Xinyu Feng. 2018. Non-Preemptive Semantics for Data-Race-Free Programs.

In ICTAC. to appear.
Jaeheon Yi, Caitlin Sadowski, and Cormac Flanagan. 2011. Cooperative Reasoning for Preemptive Execution. In PPoPP.

147–156.
Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. 2012. Formalizing the LLVM Intermediate

Representation for Verified Program Transformations. In POPL. 427–440.
Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. 2013. Formal Verification of SSA-based

Optimizations for LLVM. In PLDI. 175–186.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

http://compcert.inria.fr/release/compcert-3.0.1.tgz

	Abstract
	1 Introduction
	2 Informal Development
	2.1 Background
	2.2 Challenges and Our Approaches in Verifying Concurrent Program Compilation
	2.3 The framework and key semantics components

	3 The language and the preemptive semantics
	3.1 The Abstract Language
	3.2 Global preemptive semantics
	3.3 Event-Trace Refinement and Equivalence

	4 The Non-Preemptive Semantics
	5 The Footprint-Preserving Compositional Simulation
	5.1 The Module-Local Simulation
	5.2 Compositionality and the Non-Preemptive Global Simulation
	5.3 Flip of the Non-Preemptive Global Simulation

	6 Data-Race-Freedom
	7 The Final Theorem
	8 Framework Instantiation and CompCert backend verification
	8.1 Language Instantiations
	8.2 Adapting CompCert Compiler
	8.3 Proof Efforts in Coq

	9 Related Work
	References

