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Abstract
In the recent years, the complexity of optimizing compilers has increased significantly due to
increasing diversity of programming languages and heterogeneity of target architectures. Even
though there has been a lot of progress with the general purpose compilers, they are not been able
to extract peak level performance provided by the specialized libraries. To bridge this performance
gap domain specific compilers(DSLs) are proposed, by restricting input to a specialized domain
it can perform more aggressive transformations needed to achieve peak performance while being
more flexible than standard libraries. One of the major optimization needed to obtain high
performance on modern heterogeneous architectures is loop transformations to exploiting locality
and automatic parallelization. The polyhedral model has evolved as a highly efficient, reusable
generic framework for loop optimizations especially for regular static control affine programs. In
this thesis we explore the suitability of polyhedral loop transformation framework in context of
compiling Image processing and Deep learning pipelines. We study the challenges of adapting a
generic polyhedral scheduler for DSLs. We propose various extensions to the scheduler to find
optimal schedule by modeling various hardware and application characteristics.

We present method to handle reductions in polyhedral model. In the state-of-the-art polyhedral
compilers there was no support for reductions. The reduction loop was treated as a serial loop
and this may be a major bottleneck for several applications especially on GPUs. We propose
languages extensions in PENCIL to express arbitrary user-defined reductions. We encode this
reduction information in polyhedral model using reduction dependences. We show how to use
this dependences in polyhedral scheduler to exploit parallelization of reduction loops. We also
propose a template based code generation for emitting highly efficient reduction code for GPUs.
We validate our approach through experiments by comparing automatically generated code with
the highly tuned library.

Exploiting locality is a key factor in achieving high performance on the complex processors
with complex memory/computation hierarchies. The cost function used in the Pluto algorithm
optimizes only temporal locality. Exploiting spatial locality is as important as temporal locality
and it has implications on vectorization and coalesced memory accesses. we propose a new
unified algorithm for optimizing parallelism and locality in loop nests, that is capable of modeling
temporal and spatial effects of multiprocessors and accelerators with deep memory hierarchies
and multiple levels of parallelism. It orchestrates a collection of parametrizable optimization
problems for locality and parallelism objectives over a polyhedral space of semantics-preserving
transformations. We discuss the rationale for this unified algorithm, and validate it on a collection
of representative computational kernels/benchmarks.
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We study the challenges of using polyhedral compilation techniques for a complex, real-world,
end-to-end image processing application called SLAMBench. The SLAMBench has several
non-affine kernels that not readily amendable for polyhedral compilation.We show the usefulness
of summary functions to compile such non-affine parts of the program thus extending the reach
of polyhedral compilation. We also present prl runtime library needed to avoid redundant data
transfers between device and host. We validate our high-level compilation approach through
experiments comparing the performance of the generated code with the highly optimized manual
version of the SLAMBench.
We also study the applicability of polyhedral compilation for optimizing deep learning pipelines.
Most of the operations in the deep learning pipelines are affine hence are suitability for polyhedral
compilation. Our framework is build on TVM an end-to-end deep learning compilation framework
with support for multiple front ends such as MXNet, Tensorflow etc. and supports multiple
different architectures. We extract the polyhedral representation from TVM IR and use polyhedral
scheduler along with performance model based autotuning to automatically find the schedules for
TVM operators. In this context we extend the polyhedral scheduler to find optimal schedules
for different sizes and shapes of the tensor. We model the amount of data reuse for the case
when all the parameter values are known, and formulate the constraints to ILP to maximize
data reuse. We also present a performance model based autotuning technique that can cut down
the tuning time from hours to minutes. We conduct experiments on the common deep learning
benchmarks validating the effectiveness and general applicability of our technique in providing
portable performance.
Finally, we summarize our work and present concluding remarks as well as future research direc-
tions. We believe with the improvements proposed in this dissertation improves the effectiveness
of polyhedral framework as a loop transformation framework for compiling DSLs.
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Résumé
Au cours des dernières années, la complexité de l’optimisation du compilateur a considérablement
augmenté en raison de la diversité croissante des langages de programmation et de l’hétérogénéité
des cibles architectures. Même si les compilateurs à usage général ont beaucoup progressé,
ils ne sont pas en mesure d’extraire les performances de pointe fournies par les bibliothèques
spécialisées. Pour remédier à cette situation, des compilateurs spécifiques au domaine (DSL)
sont proposés, en limitant la saisie à un domaine spécialisé, il peut effectuer des transformations
plus agressives nécessaires pour atteindre le pic performances tout en étant plus flexible que
les bibliothèques standard. Une des optimisations majeures des transformations de boucle sont
nécessaires pour obtenir des performances élevées sur les architectures hétérogènes modernes à
exploiter la localité et la parallélisation automatique. Le modèle polyédrique a évolué comme un
cadre générique hautement efficace et réutilisable pour l’optimisation des boucles, en particulier
pour programmes affines de contrôle statique réguliers. Dans cette thèse, nous explorons la
pertinence de cadre de transformation de boucle polyédrique dans le contexte de la compilation
Traitement de l’image et Pipelines d’apprentissage en profondeur. Nous étudions les défis de
l’adaptation d’un générique ordonnanceur polyédrique pour DSL. Nous proposons diverses
extensions à le planificateur pour trouver la planification optimale en modélisant divers matériels
et caractéristiques d’application.

Nous présentons une méthode pour gérer les réductions dans un modèle polyédrique. Dans l’état
de l’art compilateurs polyédriques, il n’ya pas eu de soutien aux réductions. La réduction boucle
a été traitée comme une boucle série et cela peut être un goulot d’étranglement majeur pour
plusieurs applications notamment sur les GPU. Nous proposons des extensions de langues dans
PENCIL pour exprimer des réductions arbitraires définies par l’utilisateur. Nous encodons ceci
informations de réduction dans un modèle polyédrique utilisant des dépendances de réduction.
Nous montrons comment utiliser ces dépendances dans un planificateur polyédrique exploiter la
parallélisation des boucles de réduction. Nous proposons également un génération de code basée
sur des modèles pour une réduction très efficace de l’émission code pour les GPU. Nous validons
notre approche par des expériences de comparer le code généré automatiquement avec le très
optimisé bibliothèque.

L’exploitation de la localité est un facteur clé pour atteindre de hautes performances sur le proces-
seurs complexes avec des hiérarchies complexes de mémoire / calcul. Le coût fonction utilisée
dans l’algorithme de Pluton n’optimise que la localité temporelle. L’exploitation de la localité
spatiale est aussi importante que la localité temporelle et a des implications sur la vectorisation
et les accès mémoire coalescés. nous proposons un nouvel algorithme unifié pour optimiser le
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parallélisme et localité dans des nids de boucles, capable de modéliser temporellement et effets
spatiaux des multiprocesseurs et des accélérateurs à mémoire profonde les hiérarchies et les
multiples niveaux de parallélisme. Il orchestre un collection de problèmes d’optimisation paramé-
trables pour la localité et objectifs de parallélisme sur un espace polyédrique de préservation de
la sémantique transformations. Nous discutons de la raison de cet algorithme unifié, et valider sur
une collection de calcul représentatif noyaux / points de repère.
Nous étudions les défis de l’utilisation de techniques de compilation polyédriques pour SLAM-
Bench, une application de traitement d’image complexe et réaliste, de bout en bout. La SLAM-
Bench a plusieurs noyaux non affines qui ne peuvent pas être facilement modifiés compilation
polyédrique.Nous montrons l’utilité des fonctions de synthèse pour compiler de telles parties non
affines du programme étendant ainsi la portée de la compilation polyédrique. Nous présentons
également la bibliothèque d’exécution prl nécessaire pour éviter les redondances. transferts de
données entre l’appareil et l’hôte. Nous validons notre haut niveau approche de compilation par
des expériences comparant les performances du code généré avec la version manuelle hautement
optimisée de SLAMBench.
Nous étudions également l’applicabilité de la compilation polyédrique à l’optimisation pipelines
d’apprentissage en profondeur. La plupart des opérations dans l’apprentissage en profondeur les
pipelines sont affines et conviennent donc à la compilation polyédrique. Notre cadre repose sur
TVM, une compilation d’apprentissage en profondeur de bout en bout framework avec support de
plusieurs interfaces telles que MXNet, Tensorflow etc. et prend en charge plusieurs architectures
différentes. Nous extrayons la représentation polyédrique de TVM IR et utilisons planificateur
polyédrique avec autotuning basé sur un modèle de performance pour trouver automatiquement
les horaires des opérateurs TVM. Dans ce contexte, nous étendons l’ordonnanceur polyédrique
pour trouver horaires optimaux pour différentes tailles et formes du tenseur. Nous modélisons la
quantité de données réutilisées pour le cas où tous les les valeurs des paramètres sont connues
et formulent les contraintes à ILP maximiser la réutilisation des données. Nous présentons
également un modèle de performance basé sur technique de réglage automatique qui peut réduire
le temps de réglage de quelques heures à quelques minutes. Nous menons des expériences sur
les critères communs d’apprentissage en profondeur qui valident la l’efficacité et l’applicabilité
générale de notre technique dans fournir des performances portables.
Enfin, nous résumons nos travaux et présentons les conclusions finales ainsi que les recherches fu-
tures. directions. Nous croyons aux améliorations proposées dans cette thèse améliore l’efficacité
du cadre polyédrique en tant que transformation de boucle cadre pour la compilation de DSL.
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1 Introduction

Computer architectures continue to grow in complexity, stacking levels of parallelism and
deepening their memory hierarchies to mitigate physical bandwidth and latency limitations.
Harnessing more than a small fraction of the performance offered by such systems is a task of
ever growing difficulty. Optimizing compilers transform a high-level, portable, easy-to-read
program into more complex but efficient, target-specific implementation. Achieving performance
portability is even more challenging: multiple architectural effects come into play that are not
accurately modeled as convex optimization problems, and some may require mutually conflicting
program transformations. In this context, systematic exploration of the space of semantics-
preserving, parallelizing and optimizing transformations remains a primary challenge in compiler
construction.

Loop nest optimization holds a particular place in optimizing compilers as, for computational
programs such as those for scientific simulation, image processing, or machine learning, a large
part of the execution time is spent inside nested loops. Research on loop nest transformations has
a long history [Wol95, KA02]. Much of the past work focused on specific transformations, such
as fusion [KM93], interchange [AK84] or tiling [Wol89, IT88], or specific objectives, such as
parallelization [Wol86] or vectorization [AK87].

The polyhedral framework of compilation introduced a rigorous formalism to represent and
operate on the control flow, data flow, and storage mapping of a growing class of loop-based
programs [FL11]. It provides a unified approach to loop nest optimization, offering precise
relational analyses, formal correctness guarantees and the ability to perform complex sequences
of loop transformations in a single optimization step by using powerful code generation/synthesis
algorithms. It has been a major force driving research on loop transformations in the past
decade thanks to the availability of more generally applicable algorithms, robust and scalable
implementations, and embedding into general or domain-specific compiler frameworks [PCB+06,
GGL12a]. Loop transformations in polyhedral frameworks are generally abstracted by means of
a schedule, a multidimensional relation from iterative instances of program statements to logical
time. Computing the most profitable legal schedule is the primary goal of a polyhedral optimizer.
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Feautrier’s algorithm computes minimum delay schedules [Fea92b] for arbitrary nested loops
with affine bounds and array subscripts. The Pluto algorithm revisits the method to expose
coarse-grain parallelism while improving temporal data locality [BHRS08a, BAC16]. However,
modern complex processor architectures have made it imperative to model more diverse sources
of performance; deep memory hierarchies that favor consecutive accesses—cache lines on CPUs,
memory coalescing on GPUs—are examples of hardware capabilities which must be exploited to
match the performance of hand-optimized loop transformations.

1.1 Towards Domain-specific Languages

There exist a large number of mature polyhedral compilation frameworks and loop optimizers,
including both research projects [BHRS08b, CCH08, VCJC+13a], and commercial productions
[TCE+10, GGL12b, SLLM06]. Such compilers usually take a general-purpose high-level or
intermediate language as input, extract the polyhedral representation for static affine parts
of it, perform loop optimizations in polyhedral IR and then transform optimizes polyhedral
representation to input high-level or intermediate language. Unlike the traditional compiler where
there are multiple compilation stages for each individual loop transformations, in polyhedral
model all the loop transformations are combined into a single compilation stage. This greatly
simplifies the loop transformation stages as we do not have to worry about ordering of individual
loop transformation stages. Despite the success over traditional compilers, the optimality of the
code generated by such polyhedral compilers still remains elusive, falling behind the performance
of heavily hand-tuned codes written by an expert.

One of the reason of performance gap between the generated codes of optimizing compilers and
hand-written programs is due to the conservativeness of general combination stages. An expert
programmer makes use of domain specific and problem specific information to produce highly
optimized library functions for a given architecture whose performance is close to machine peaks.
The general purpose compiler does not have all the relevant domain specific information and it
cannot perform aggressive transformations needed achieve peak performance. It is very difficult
to prove the correctness of such aggressive transformations in a general context hence a very
conservative heuristics are chosen. It is not possible for the programmer to convey this domain
specific knowledge to the compiler in general purpose languages.

Domain-specific languages (DSLs) are proposed to bridge this performance gap and are becom-
ing prevalent in many application domains. A high-level language that is specific to a given
domain improves the programmer productivity since there are high level abstractions specific
to a given domain can be used as building blocks. It also allows the DSL compiler to take
advantage of the domain specific knowledge while compiling such high level abstractions. It can
perform aggressive transformations since input domain is restricted. This makes it much easier to
reason about correctness of such transformations and can use aggressive heuristics to obtain high
performance. To summaries general purpose compilation is a evolutionary while domain specific
compilation is revolutionary. The polyhedral model was successfully integrated with DSLs, such
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as those for optimizing DSLs for graphical dataflow language [BB13, SSPS15], stencil com-
putations [HVF+13], image processing applications Halide [RKBA+13] PolyMage [MVB15]
etc. Recently, due to the revolution in the field of deep learning there are several DSL com-
pilation frameworks such as XLA in Tensorflow [AIM17], JIT compiler in Pytorch [PCC+],
TensorComprehensions [VZT+18] and TVM compiler stack [tvm] are gaining popularity. The
loop transformations play very a important role in achieving high performance in these do-
mains. The polyhedral model is highly suited as intermediate representation for performing loop
transformations in these DSL compilation framework.

1.2 Handling spatial locality

There has been some past work on incorporating knowledge about consecutive accesses into
a polyhedral optimizer, mostly as a part of transforming programs for efficient vectoriza-
tion [TNC+09, VMBL12, KVS+13]. However, these techniques restrict the space of schedules
that can be produced; we show that these restrictions miss potentially profitable opportunities
involving schedules with linearly dependent dimensions or decoupling the locality optimization
of individual fused clusters of statements. In addition, these techniques model non-convex opti-
mization problems through the introduction of additional discrete (integer, boolean) variables and
introducing bounds on coefficients. These ad-hoc bounds do not practically impact the quality of
the results, but remain slightly unsatisfying from a mathematical modeling perspective. Finer
architectural modeling such as the introduction of spatial effects also pushes for more discrete
variables, requiring extra algorithmic effort to keep the dimensional growth under control. A
different class of approaches relies on a combination of polyhedral and traditional, syntactic-level
loop transformations. A polyhedral optimizer is set up for one objective, while a subsequent
syntactic loop transformation addresses another objective. For example, PolyAST uses a polyhe-
dral optimizer to improve locality through affine scheduling and loop tiling. After that, it applies
syntactic transformations to expose different forms of parallelism [SPS14]. Prior to PolyAST, the
pioneering Pluto compiler itself relied on a heuristic loop permutation to improve spatial locality
after the main polyhedral optimization aiming for parallelism and temporal locality [BHRS08a].
Operating in isolation, the two optimization steps may end up undoing each other’s work, hitting
a classical compiler phase ordering problem.

We propose a polyhedral scheduling algorithm that accounts for multiple levels of parallelism
and deep memory hierarchies, and does so without imposing unnecessary limits on the space of
possible transformations. Ten years ago, the Pluto algorithm made a significant contribution to the
theory and practice of affine scheduling for locality and parallelism. Our work extends this frontier
by revisiting the models and objectives in light of concrete architectural and microarchitectural
features, leveraging positive memory effects (e.g., locality) and avoiding the negative ones (e.g.,
false sharing). We fundamentally extend the reach of affine scheduling, seeing it as a collection
of parameterizable optimization problems, with configurable constraints and objectives, allowing
for schedules with linearly dependent dimensions, and dealing with non-convex spaces. In
particular, we contribute a “clustering” technique for loop fusion (an essential locality-enhancing
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transformation) which allows to precisely intertwine the iterations of different statements while
maintaining the execution order within each loop, and we extend the loop sinking options when
aligning imperfectly nested loops to the same depth. We address spatial effects by extending
the optimization objective and allowing for linearly dependent dimensions in affine schedules
that are out of reach of a typical polyhedral optimizer. We also provide an original approach to
non-convex optimization problems where negative schedule coefficients are necessary to tile loop
iteration spaces while aligning them with the direction of consecutive memory accesses.

We design our algorithm as a template with multiple configuration dimensions. Its flexibility
stems from a parameterizable scheduling problem and a pair of optimization objectives that can
be interchanged during the scheduling process. As a result, our approach is able to produce in
one polyhedral optimization pass schedules that previously required a combination of polyhedral
and syntactic transformations. Since it remains within the polyhedral model, it can benefit from
its transformation expressiveness and analysis power, e.g., to apply optimizations that a purely
syntactic approach might not consider, or to automatically generate parallelized code for different
accelerators from a single source.

1.3 Reductions in polyhedral model

A reduction is an associative and commutative computation that operates on a set of data reducing
its dimensionality. Reductions can be found in many scientific application domains such as image
processing, liner-algebra, partial differential equations, computational geometry etc. They often
found in the codes that test the convergence of iterative algorithms and are executed over and
over again. Reductions are also found extensively in Monte Carlo simulations where averages
and variances of a vast number of random simulations need to be computed. An unoptimized
or poorly optimized reduction will become the bottleneck for whole program performance.
In reductions, a binary operator is applied successively to all elements of the input set. This
introduces dependences between loop iterations and forces them to execute sequentially. This
binary operator is usually associative and commutative. These properties allow us to ignore the
sequential dependence and parallelize reductions. Since the reduction operator is associative,
we can perform multiple reduction operations in parallel and then combine them to produce the
final output. The commutativity of the operator can further be used to optimize the reduction on
parallel architectures such as GPUs.

To optimize reductions, we first need to identify them. Automatic detection of simple reductions
with commonly used reduction operators such as addition, multiplication, min, max is quite
trivial. There are some techniques proposed in the literature to detect them. However, when
the reduction is performed on a user-defined data type or with a more complex operator it is
very challenging to detect them and none of existing compiler can do this automatically. It is
quite clear to the programmer identify reduction operations. Hence, we propose two extensions
that allow the programmer to convey reduction information to the compiler. For a compiler to
optimize reductions, it requires the identity value of reduction operator, reduction domain and the
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actual reduction operator. The programmer can convey all these information using the proposed
extensions with very little modifications to input code.

Even after the reduction is identified, it is not trivial to optimize them on massively parallel
architectures such as GPUs. Reduction operations typically, have very low arithmetic intensity,
performing one operation per load. Hence, they are bandwidth bound and require many extensive
optimizations to achieve peak performance. There are many libraries like CUB, THRUST that
provide a highly efficient implementation of reductions. They can achieve more than 90 percent
of peak performance by performing various optimizations including using architecture-specific
instruction to perform reduction and tuning parameters for a given architecture. Programmer
can customize reduction by providing a reduction operator and an identity value. It is easy to
map a single reduction into a library call but, when you have multiple reductions on same input
data, or if you want to perform the reduction on selective elements of the input, then it is not
efficient to use these libraries as they require multiple reduction calls or preprocessing of input
data. For example, consider a program to find min and max elements of an array. We need two
library calls, once to find the min and another one to find the max. This inefficient as one could
use a single scan of the array to find both max and min. SLAMBench has a reduction kernel that
performs 32 different reductions. MG benchmark of the NAS benchmark suite has a reduction
kernel to find 10 largest and 10 smallest elements of an array. Using library calls in these cases
will be highly inefficient. Although library APIs are highly efficient, they are not flexible enough
to adapt to input program requirements.

Reductions are bound by the maximum available bandwidth of the device. We can improve the
arithmetic intensity of reductions by performing certain loop transformations such as loop fusion.
Performing two reductions at once is twice as fast as two separate reductions. In the latter case,
input data is scanned twice, whereas in former input data is scanned only once and two reductions
are performed per single load. In order to enable such transformations, we model reductions
in polyhedral model. We propose a dependence based abstraction for modeling reductions in
polyhedral model. This abstraction fits well into the existing polyhedral compilation toolchain
while enabling loop optimizations for reductions.

We propose template based code generation for reductions. We have selected a reduction template
that does have all the optimizations required to achieve peak performance. We adapt this template
to match the reductions defined by the programmer. Since, we have complete information
regarding reductions in the input program, we can precisely modify the template code even
after we performed optimizations on reductions. We also auto-tune the template for a given
GPU architecture to find optimal values for parameters such as block size, grid size and number
reduction elements per threads. Thus, with our approach, we are able to generate highly efficient
code for sequences of user-defined reductions that is portable across different architectures.
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1.4 SLAMBench compilation

SLAM [NIH+11] is the main algorithm to perform real-time localization and dense mapping
using depth information. SLAMBench [NBZ+14] is open-source benchmark for real-time dense
SLAM algorithm. This is a large end-to-end benchmark with 14 different kernels that constructs
a 3D model from the input depth images. There are several challenges for applying polyhedral
computation techniques to such a large benchmark. We port the entire SLAMBench kernel to
PENCIL intermediate language and use PPCG to automatically produce CUDA and OpenCL
version of kernels. Several of these kernels are non-affine and hence cannot be directly expressed
in polyhedral model. We use summary functions to wrap the non-affine core kernel parts while
exposing the affine loops to polyhedral model. We also show the need of runtime in avoiding
redundant data copies between device and host. We propose prl runtime library that can be used
to express the array access information in non pencil regions. This information is used during
the program execution to decide the need to transfer data between device and the host. This
approach of writing kernels in high level intermediate language (PENCIL) rather than low level
device specific languages such as CUDA or OpenCL enhances the programmer productivity
while providing portable performance across different GPU devices and architectures. We show
the adaptability of polyhedral compilation techniques for large benchmarks.

1.5 Deep learning pipeline compilation

In recent years there is been an exponential growth in deep learning techniques. Deep learning
pipeline has all the computations that are affine and are amendable for polyhedral compilation.
Typically, in deep learning pipeline consists executing a DAG of tensor computations millions of
time during training phase. This computation DAG has many layers of same computation repeated
multiple time with different sizes and shapes of tensors. We study advantages and challenges
of using polyhedral compilation techniques for deep learning tensor computations. We extract
polyhedral intermediate representation from TVM [CMJ+18], an end-to-end compiler stack that
has support for many popular deep learning frameworks such as Tensorflow, MXNet, Keras etc.
We identify two key challenges with using existing polyhedral compilation techniques with deep
learning computations. First, the current state-of-the-art polyhedral scheduler is agnostic to the
values of program parameters such as tensor sizes. Hence, it will produce the same schedule
for all the different layers with drastically different tensor sizes and shapes. We propose new
additions to the Pluto algorithm that models the actual data reuse. We show how to formulate
data reuse into linear constraints for the ILP so that we find the schedule that maximizes data
reuse. This additional constraints ensure that we find optimal schedule for any given problem
sizes. The second problem that we address is improving the autotuning time.

The ILP based polyhedral scheduler automatically finds the best loop transformations. In order
to map such computations to GPUs, we need to choose the value of various parameters such
as tile sizes, block sizes, grid sizes, unroll factors etc.. Typically, we use an autotuner to find
the optimal values of these parameters. The autotuner does an exhaustive search on the entire
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exponential search space to find the optimal values. The optimal values of these parameters
depends on the particular GPU architecture and problem size. We need to repeat the expensive
exhaustive search for different problem sizes and GPU architectures. We propose a performance
model based autotuning that drastically reduces time for autotuning from hours to minutes. We
propose a performance model based approach to filter the worst candidates from the search space.
We automatically build a performance model for each operator on a given architecture. The
performance model will predict the execution time of kernel for any given size and parameter
values. The performance model a MLP (Multi-layered-perceptron) model that is built from data
collected by uniform sampling of the search space. We built an accurate performance model with
this approach. We use this model on all the valid candidates on the search space and pick only a
few hundred best candidates. Only these candidates are evaluated on the hardware to find the
optimal parameter values.

In summary, these are the main contributions of the thesis:

• First class support for reductions in polyhedral model using reduction dependences, extend
scheduler to support reductions and template based code generation for GPUs.

• Modeling spatial locality and extending ILP scheduler to handle multiple conflicting
objectives.

• Polyhedral compilation of end-to-end real world 3D imaging SLAMBench benchmark.

• Data reuse volume extensions to ILP scheduler to adapt the schedule with problem sizes in
the context of compiling deep learning pipeline in polyhedral framework.

7





2 Background

2.1 Polyhedral framework

The polyhedral framework is a linear algebraic representation of the program parts that are
“sufficiently regular”. It may represent arithmetic expressions surrounded by loops and branches
whose conditions are affine functions of outer loop iterators and runtime constants [FL11]. These
constants, referred to as parameters, may be unknown at compilation time and are treated sym-
bolically. Expressions may read and write to multidimensional arrays with the same restrictions
on the subscripts as on control flow. It has been the main drive for research on loop optimization
and parallelization in the last two decades [Fea92b, Bas04, BHRS08a, GGL12a].

The polyhedral framework operates on individual executions of statements inside loops, or
statement instances, which are identified by a named multidimensional vector, where the name
identifies the statement and the coordinates correspond to iteration variables of the surrounding
loops. The set of all named vectors is called the iteration domain of the statement. Iteration
domains can be expressed as multidimensional sets constrained by Presburger formulas [PW94a].
For example, the code fragment in Figure 2.1 contains two statements, S and R with iteration
domains DS(N ) = {S(i , j ) | 0 ≤ i , j < N } and DR(N ) = {R(i , j ,k) | 0 ≤ i , j ,k < N } respectively. In
this paper, we use parametric named relations as proposed in iscc [Ver11]; note that set vectors
in DS and DR are prefixed with the statement name. Unless otherwise specified, we assume all
values to be integer, i , j , · · · ∈Z.

Polyhedral modeling of the control flow maps every statement instance to a multidimensional
logical execution date [Fea92b]. The instances are executed following the lexicographic order of

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

S: C[i][j] = 0.0;
for (i = 0; i < N; ++i)

for (j = 0; j < N; ++j)
for (k = 0; k < N; ++k)

R: C[i][j] += A[i][k] * B[k][j];
Figure 2.1 – Naive implementation of matrix multiplication.
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their execution dates. This mapping is called a schedule, typically defined by piecewise(quasi-)
affine functions over the iteration domain TS(ppp) = {iii → ttt | {t j =φS, j (iii ,ppp)}∧ iii ∈DS}, which are
disjoint unions of affine functions defined on a finite partition of the iteration domain, allowing
integer division by constants. They allow arbitrarily complex loop traversals and interleavings of
statement instances. In this paper, xxx denotes a row vector and ~x denotes a column vector. Code
motion transformations may be expressed either by introducing auxiliary dimensions [KP95] in
the schedule or by using a schedule tree structure that directly encodes enclosure and statement-
level ordering [VGGC14]. For example, the schedule that preserves the original execution order
in Figure 2.1 can be expressed as TS(N ) = {S(i , j ) → (t1, t2, t3, t4) | t1 = 0∧ t2 = i ∧ t3 = j ∧ t4 =
0}, TR(N ) = {R(i , j ,k) → (t1, t2, t3, t4) | t1 = 1∧ t2 = i ∧ t3 = j ∧ t4 = k}. The first dimension is
independent of the iteration domain and ensures that all instances of S are executed before any
instance of R.

To preserve the program semantics during transformation, it is sufficient to ensure that the order
of writes and reads of the same memory cell remains the same [KA02]. First, accesses to array
elements (a scalar being a zero-dimensional array) are expressed as multidimensional relations
between iteration domain points and named cells. For example, the statement S has one write
access relation A write

S→C = {S(i , j ) → C(a1, a2) | a1 = i ∧a2 = j }. Second, pairs of statement instances
accessing the same array element where at least one access is a write are combined to define a
dependence relation. For example, the dependence between statements S and R is defined by
a binary relation PS→R = {S(i , j ) → R(i ′, j ′,k) | i = i ′∧ j = j ′∧ (i , j ) ∈ DS∧ (i ′, j ′,k) ∈ DR}. This
approach relates all statement instances accessing the same memory cell and is referred to as
memory-based dependence analysis. It is possible to compute exact data flow given a schedule
using the value-based dependence analysis [Fea91]. In this case, the exact statement instance that
wrote the value before a given read is identified. For example, instances of R with k 6= 0 no longer
depend on S: PS→R = {S(i , j ) → R(i ′, j ′,k) | i = i ′∧ j = j ′∧k = 0∧ (i , j ) ∈DS∧ (i ′, j ′,k) ∈DR}.

A dependence is satisfied by a schedule if all the statement instances in the domain of its relation
are scheduled before their counterparts in the range of its relation, i.e., dependence sources are
executed before respective sinks. A program transformation is valid, i.e., preserves original
program semantics, if all dependences are satisfied.

2.1.1 Finding Affine Schedules

Numerous optimization algorithms in the polyhedral framework define a closed form of all valid
schedules and solve an optimization problem in that space. As they usually rely on integer
programming, objective functions and constraints should be expressed as affine functions of
iteration domain dimensions and parameters. Objectives may include: minimum latency [Fea92b],
parallelism [BHRS08a], locality [BBK+08] and others.

Multidimensional affine scheduling aims to determine sequences of statement schedule functions
of the form φS j = iii~c j +ppp ~d j +D where~c j , ~d j ,D are (vectors of) unknown integer values. Each
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such affine function defines one dimension of a multidimensional schedule.

Dependence Distances, Dependence Satisfaction and Violation Consider the affine form
(φR, j (iii ,ppp)−φS, j (iii ,ppp)), defined for a dependence between S and R. This form represents the
distance between dependent statement instances. If the distance is positive, the dependence
is strongly satisfied, or carried, by per-statement scheduling functions φ. If it is zero, the
dependence is weakly satisfied. The dependence with a negative distance that was not carried by
any previous scheduling function is violated and the corresponding program transformation is
invalid. For a schedule to be valid, i.e., to preserve the original program semantics, it is sufficient
that it carries all dependences [KA02].

Farkas’ Lemma Note that the target form of the schedule function contains multiplication
between unknown coefficients ccc j , ddd j ,D and loop iterator variables iii that may take any value
within the iteration domain. This relation cannot be encoded in a linear programming problem.
Polyhedral schedulers usually rely on the affine form of Farkas’ lemma, a fundamental result in
linear algebra that states that an affine form ccc~x +d is nonnegative everywhere in the (non-empty)
set defined by A~x +~b ≥ 0 iff it is a linear combination ccc~x +d ≡λ0 +λλλ(A~x +~b), where λ0,λλλ≥ 0.
Applying Farkas’ lemma to the dependence distance relations and equating coefficients on the
left and right hand side of the equivalence gives us constraints on schedule coefficients ccc j for the
dependence to have non-negative distance, i.e., to be weakly satisfied by the schedule function, in
the iteration domains.

Permutable Bands A sequence of schedule functions is referred to as schedule band. If all
of these functions weakly satisfy the same set of dependences, they can be freely interchanged
with each other without violating the original program semantics. Hence the band is permutable.
Such bands satisfy the sufficient condition for loop tiling [IT88] and are also referred to as tilable
bands.

2.1.2 Feautrier’s Algorithm

Feautrier’s algorithm is one of the first to systematically compute a (quasi-)affine schedule if
there exists exits one [Fea92a, Fea92b]. It produces minimal latency schedules. The general idea
of the algorithm is to find the minimal number of affine scheduling functions by ensuring that
each of them carries as many dependences as possible. Once all dependence have been carried by
the outer loops, the statement instances inside each individual iteration can be computed in any
order, including in parallel. Hence Feautrier’s algorithm exposes inner, fine-graph parallelism.

Encoding Dependence Satisfaction Let us introduce an extra variable ek for each dependence
in the program. This variable is constrained by 0 ≤ ek ≤ 1 and by ek ≤ φRk , j (iii ,ppp)−φSk , j (iii ,ppp),

11



Chapter 2. Background

where Sk and Rk identify the source and the sink of the kth dependence, respectively. ek = 1 iff
the dependence is carried by the given schedule function.

Affine Transformations Feautrier’s scheduler proceeds by solving linear programming (LP)
problems using a special lexmin objective. This objective was introduced in the PIP tool and
results in the lexicographically smallest vector of the search space [Fea88]. Intuitively, lexmin

first minimizes the foremost component of the vector and only then moves on to the next
component. Thus it can optimize multiple criteria and establish preference among them.

The algorithm computes schedule functions that carry as many dependences as possible by
introducing a penalty for each non-carried dependence and by minimizing it. The secondary
criterion is to generate small schedule coefficients, typically decomposed into minimizing sums
of parameter and schedule coefficients separately. These criteria are encoded in the LP problem
as

lexmin
∑
k

(1−ek ),
ns∑

j=1

np∑
i=1

d j ,i ,
ns∑

j=1

dimDS j∑
i=1

c j ,i ,e1,e2 . . .ek . . . (2.1)

where individual d j ,i and c j ,i for each statement are included in the trailing positions of the
vector in no particular order, np = dim~p and ns is the number of statements. The search space is
constrained, using the Farkas lemma, to the values d j ,i , c j ,i that weakly satisfy the dependences.
Dependences that are carried by the newly computed schedule function are removed from further
consideration. The algorithm terminates when all dependences have been carried.

2.1.3 Pluto Algorithm

The Pluto algorithm is one of the core automatic parallelization and optimization algorithms [BHRS08a].
Multiple extensions have been proposed, including different search spaces [VMBL12], special-
izations and cost functions for GPU [VCJC+13b] and generalizations with guarantees of the
existence of a solution [BAC16].

Data Dependence Graph Level On a higher level, Pluto operates on the data dependence graph
(DDG), where nodes correspond to statements and edges together with associated relations define
dependences between them. Strongly connected components (SCC) of the DDG correspond to
the loops that should be preserved in the program after transformation [KA02]. Note that one
loop of the original program containing multiple statements may correspond to multiple SCCs,
in which case loop distribution is allowed. For each component, Pluto computes a sequence of
permutable bands of maximal depth. To form each band, it iteratively computes affine functions
linearly independent from the already computed ones. Linear independence ensures the algorithm
makes progress towards a complete schedule on each step. Carried dependences are removed
only when it is no longer possible to find a new function that weakly satisfies all of them, which
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delimits the end of the permutable band. After removing some dependences, Pluto recomputes
the SCC on the updated DDG and iterates until at least as many scheduling functions as nested
loops are found and all dependences are carried. Components are separated by introducing an
auxiliary dimension and scheduled by topological sorting.

Affine Transformation Level Affine transformation in Pluto is based on the observation that
dependence distance (φR, j (iii ,ppp)−φS, j (iii ,ppp)) is equal to the reuse distance, i.e. the number of
iterations of the given loop between successive accesses to the same data. Minimizing this
distance will improve locality. Furthermore, zero distance implies that the dependence is not
carried by the loop (all accesses are made within the same iteration) and thus does not prevent
its parallelization. Pluto uses Farkas’ lemma to define a parametric upper bound on the distance
(φR, j (iii ,ppp)−φS, j (iii ,ppp)) ≤uuu~p +w , which can be minimized in an ILP problem as

lexminu1,u2, . . . ,unp , w, . . . ,cS,1, . . .

where np = dim~p, and cS,k are the coefficients of φS, j . The cS,k coefficients are constrained to
be represent a valid schedule, i.e. not violate dependences, using Farkas’ lemma. They are also
restricted to have at least one strictly positive component along a basis vector of the null space of
the current partial schedule, which guarantees linear independence. Note that it is sufficient to
have a non-zero component rather than a strictly positive one, but avoiding a trivial solution with
all components being zero may be computationally expensive [BAC16].

Fusion Auxiliary dimensions can be used not only to separate components, but also to group
them together by assigning identical constant values to these dimensions. This corresponds to a
loop fusion. By default, Pluto sets up an integer programming problem to find such constants that
optimize the smart fusion heuristic. This heuristic tries to maximize fusion between components
while keeping the number of required prefetching streams limited [BGDR10]. Pluto also features
the maximum fusion heuristic, which computes weakly connected components of the DDG and
keeps statements together unless it is necessary to respect the dependence.

Tiling For each permutable band with at least two members, Pluto performs loop tiling after
the full schedule was computed. It is applied by introducing additional schedule dimensions after
the band and relating them to those of the band through linear inequalities. New dimensions
correspond to point loops and original ones correspond to tile loops. Various tile shapes are
supported through user-selected options. For the sake of simplicity, we hereinafter focus on
rectangular tiles.

Differentiating Tile and Point Schedule The default tile construction uses identical schedules
for tile and point loops. Pluto allows to construct different schedules using the following two
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post-affine modifications. First, a wavefront schedule allows to expose parallelism at the tile loop
level. If the outermost schedule function of the band carries dependences, i.e., the corresponding
loop is not parallel, then it may be replaced by a sum of itself with the following function,
performing a loop skewing transformation. It makes the dependences previously carried by the
second-outermost function to be carried by the outermost one instead, rendering the second one
parallel. Such wavefronts can be constructed for one or all remaining dimensions of the band
exposing different degrees of parallelism. Second, loop sinking allows to leverage locality and
vectorizability of point loops. Pluto chooses the point loop j that features the most locality using
the heuristic based on scheduled access relations A ◦T

j : L j = nS ·
∑

i
(2si +4li +8v −16oi ) → max, (2.2)

where nS is the number of statements in the loop, si = 1 if the scheduled access Ai ◦T features
spatial locality ana = kt j + f (uuu)+w,1 ≤ k ≤ 4,na = dim(DomA ) and si = 0 otherwise; li = 1 if
it yields temporal locality ana = f (uuu)+w and li = 0 otherwise; oi = 1 if it does not yield either
temporal or spatial locality si = li = 0 and oi = 0 otherwise; and v = 1 if oi = 0∀i . The loop j
with the largest L j value is put innermost in the band, corresponding to the loop permutation.
The validity of skewing and permutation is guaranteed by permutability of the band.

Pluto+ Recent work on Pluto+ extends the Pluto algorithm to prove its completeness and
termination as well as to enable negative schedule coefficients [BAC16]. It imposes limits on the
absolute values of the coefficients to simplify of the linear independence check and zero solution
avoidance.

14



2.2. Polyhedral Scheduling in isl

2.2 Polyhedral Scheduling in isl

Let us now present a variant of the polyhedral scheduling algorithm, inspired by Pluto and
implemented in the isl library [Ver10]. We occasionally refer to the embedding of the schedul-
ing algorithm in a parallelizing compiler called ppcg [VCJC+13b]. We will review the key
contributions and differences, highlighting their importance in the construction of a unified model
for locality optimization.

The key contributions are: separated specification of relations for semantics preservation, lo-
cality and parallelism; schedule search space supporting arbitrarily large positive and negative
coefficients; iterative approach simultaneously ensuring that zero solutions are avoided and
that non-zero ones are linearly independent; dependence graph clustering mechanism allowing
for more flexibility in fusion; and the instantiation of these features for different scheduling
scenarios including GPU code generation [VCJC+13b].1 A technical report is available for the
most detailed information about the algorithm and implementation [VJ17].

2.2.1 Scheduling Problem Specification in isl

The scheduler we propose offers more control by through different groups of relations suitable
for specific optimization purposes:

• validity relations impose a partial execution order on statement instances, i.e., they are
dependences sufficient to preserve program semantics;

• proximity relations connect statement instances that should be executed as close to each
other as possible in time;

• coincidence relations connect statement instances that, if not executed at the same time
(i.e., not coincident), prevent parallel execution.

In the simplest case, all relations are the same and match exactly the dependence relations of Pluto:
pairs of statement instances accessing the same element with at least one write access. Hence they
are referred to as schedule constraints within isl. However, only validity relations are directly
translated into the ILP constraints. Proximity relations are used to build the objective function:
the distance between related instances is minimized to exploit locality. The scheduler attempts to
set the distance between points in the coincidence relations to zero, to expose parallelism at a
given dimension of the schedule. The latter relations are also useful to inform the scheduler that
certain instances may safely commute (atomically), even if dependences exist, removing those
dependences from the former relations; it is a basis for live range reordering [VC16], which

1While many of these features have been available in isl since version isl-0.06-43-g1192654, the
algorithm has seen multiple improvements up until the current version; we present these features as contributions
specifically geared towards the construction of better schedules for locality and parallelism, for the first time.
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removes false dependences induced by the reuse of the same variable for different values, when
the live ranges of those values do not overlap.

2.2.2 Affine Transformations

Prefix Dimensions Similarly to Pluto, isl iteratively solves integer linear programming (ILP)
problems to find permutable bands of linearly independent affine scheduling functions. It uses
a lexmin objective, giving priority to initial components of the solution vector. Such behavior
may be undesirable when these components express schedule coefficients: a solution with a
small component followed by a very large component would be selected over a solution with a
slightly larger first component but much smaller second component, while large coefficients tend
to yield worse performance [PBB+11]. Therefore, isl introduces several leading components
as follows:

• sum of all parameter coefficients in the distance bound;

• constant term of the distance bound;

• sum of all parameter coefficients in all per-statement schedule functions;

• sum of all variable coefficients in all per-statement schedule functions.

They allow isl to compute schedules independent of the order of appearance of coefficients
in the lexmin formulation. Without the prefix, it would have also preferred the (φ2 −φ1) ≤
0p1 +100p2 distance bound to (φ2 −φ1) ≤ p1 +0p2 bound because (0,100) ≺ (1,0), while the
second should be preferred assuming no prior knowledge on the parameter values.

Negative Coefficients The isl scheduler introduces support for negative coefficients by
substituting dimension x with its negative and positive part x = x+ − x−, where x+ ≥ 0 and
x− ≥ 0 in the non-negative lexmin optimization. This decomposition is only performed for
schedule coefficients c, where negative coefficients correspond to loop reversal, and for parameter
coefficients of the bound u, connected to c through Farkas’ inequalities. Schedule parameter
coefficients and constants d can be kept non-negative because a polyhedral schedule only
expresses a relative order. These coefficients delay the start of certain computation with respect
to another. Thus a negative value for one statement can be replaced by a positive value for all the
other statements.

ILP Formulation The isl scheduler minimizes the objective

lexmin
np∑

i=1
(u−

i +u+
i ), w,

np∑
i=1

ns∑
j=1

d j ,i ,
ns∑

j=1

dimDS j∑
i=1

(c−j ,i + c+j ,i ), . . . (2.3)
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in the space constrained by applying Farkas’ lemma to validity relations. Coefficients ui and w

are obtained from applying Farkas’ lemma to proximity relations. Distances along coincidence
relations are required to be zero. If the ILP problem does not admit a solution, zero-distance
requirement is relaxed. If the problem remains unsolvable, isl performs band splitting as
described below.

Individual coefficients are included in the trailing positions and also minimized. In particular,
negative parts u−

i immediately precede respective positive parts u+
i . Lexicographical minimiza-

tion will thus prefer a solution with u−
i = 0 when possible, resulting in non-negative coefficients

ui .

Band Splitting If the ILP problem does not admit a solution, isl applies a variant of
Feautrier’s scheduler [Fea92b] using validity and coincidence relations as constraints [VJ17].
If the problem involved constraints based on coincidence relations and outer parallelism is not
requested in configuration, it first relaxes such constraints and tries to find a solution. Otherwise, it
finishes the current schedule band, removes relations that correspond to fully carried dependences
and starts a new band.

2.2.3 Linear Independence

Encoding Just like Pluto, isl also computes a subspace that is orthogonal to the rows con-
taining coefficients of the already computed affine schedule functions, but it does so in a slightly
different way [VJ17]. Let rrr k form a basis of this orthogonal subspace. For a solution vector to be
linearly independent from previous ones, it is sufficient to have a non-zero component along at
least one of these rrr k vectors. This requirement is enforced iteratively as described below.

Optimistic Search isl tries to find a solution xxx directly and only enforces non-triviality if
an actual trivial solution (zero) was found. More specifically, it defines non-triviality regions
in the solution vector xxx that correspond to schedule coefficients. Each region corresponds to a
statement and is associated with a set of vectors {rrr k } described above. A solution is trivial in
the region if ∀k,rrr k~x = 0. In this case, the scheduler introduces constraints on the signs of rrr k~x,
invalidating the current (trivial) solution and requiring the ILP solver to continue looking for a
solution. Backtracking is used to handle different cases, in the order rrr 1~x > 0, then rrr 1~x < 0, then
rrr 1~x = 0∧rrr 2~x > 0, etc. When a non-trivial solution is found, the isl scheduler further constrains
the prefix of the next solution,

∑
i ui , w, to be lexicographically smaller than the current one

before continuing iteration. In particular, it enforces the next solution to have an additional
leading zero.

This iterative approach allows isl to support negative coefficients in schedules while avoiding
the trivial zero solution. Contrary to Pluto+ [BAC16], it does not limit the absolute values of
coefficients, but instead requires the isl scheduler to interact more closely with the ILP solver.
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This hinders the use of an off-the-shelf ILP solver, as is (optionally) done in R-Stream [VMBL12]
and Pluto+ [BAC16]. Due to the order in which sign constraints are introduced, isl prefers
schedules with positive coefficients in case of equal prefix. The order of the coefficients is
also reversed, making isl prefer a solution with final zero-valued schedule coefficients. This
behavior allows to prefer the original loop order in absence of a good transformation.

Although, in the worst case, this iterative approach considers an exponentially large number of
sign constraints, it does not often happen in practice. As the validity constraints are commonly
derived from an existing loop program, ensuring non-triviality for one region usually makes other
validity-related regions non-trivial as well.

Slack for Smaller-Dimensional Statements When computing an n-dimensional schedule for
an m-dimensional domain and m < n, only m linearly independent schedule dimensions are
required. Given a schedule with k linearly independent dimensions, isl does not enforce linear
independence until the last (m−k) dimensions. Early dimensions may still be linearly independent
due to validity constraints. At the same time, isl is able to find bands with linearly-dependent
dimensions if necessary, contrary to Pluto, which enforces linear independence early.

2.2.4 Clustering

Initially, each strongly-connected component of the DDG is considered as a cluster. First, isl
computes per-statement schedules inside each component. Then it selects a pair of clusters
that have a proximity edge between them, preferring pairs where schedule dimensions can be
completely aligned. The selection is extended to all the clusters that form a (transitive) validity
dependence between these two. Then, the isl scheduler tries to compute a global schedule,
between clusters, that respects inter-cluster validity dependences using the same ILP problem
as inside clusters. If such a schedule exists, isl combines clusters after checking several
profitability heuristics. Cluster combination is essentially loop fusion, where per-statement
schedules are composed with schedules between clusters. Otherwise, it marks the edge as no-
cluster and advances to the next candidate pair. The process continues until a single cluster is
formed or until all edges are marked no-cluster. Clustering essentially corresponds to loop fusion,
except that it allows for rescheduling of individual clusters with respect to each other. The final
clusters are topologically sorted using the validity edges.

Clustering Heuristics Clustering provides control over parallelism preservation and locality
improvement during fusion. When parallelism is the objective, isl checks that the schedule
between clusters contains at least as many coincident dimensions on all individual clusters.
Furthermore, it estimates whether the clustering is profitable by checking whether it makes the
distance along at least one proximity edge constant and sufficiently small.
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2.2.5 Additional Transformations

Several transformations are performed on the schedule tree representation outside the isl

scheduler.

Loop tiling is an affine transformation performed outside the isl scheduler. In the ppcg

parallelizing compiler, it is applied to outermost permutable bands with at least two dimensions
and results in two nested bands: tile loops and point loops [VCJC+13b]. In contrast to Pluto, the
isl scheduler pushes no other affine transformation to this level.

Parallelization using the isl scheduler takes the same approach as Pluto when targeting CPUs.
For each permutable band, compiled syntactically into a loop nest, the outermost parallel loop
is marked as OpenMP parallel and the deeper parallel loops are ignored (or passed onto an
automatic vectorizer).

GPU code generation is performed as follows. First, loop nests with at least one parallel loop are
stripmined. At most two outermost parallel tile loops are mapped to CUDA blocks. At most three
outermost parallel point loops are mapped to CUDA threads. Additional placement strategies
place temporally local on the GPU shared/local memory and registers, see [VCJC+13b].
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3 Reductions in PENCIL

3.1 Overview of PENCIL

PENCILis a platform-neutral compute intermediate language intended as a target language for DSL
compilers and as a high level portable implementation language for programming accelerators. A
domain expert given high-level knowledge about standard operations in a given domain has a lot
of information which could be useful for an optimizing compiler. Information regarding aliasing,
parallelization, high level dataflow and other domain specific information will enable compiler to
perform more accurate static analysis, additional optimizations and to generate efficient target-
specific code. This information is typically difficult for a compiler to extract but that can be
easily captured from a DSL, or expressed by an expert programmer. PENCILis a rigorously-
defined subset of GNU C99 and provides language constructs, that enable communication of this
domain-specific information to the PENCIL compiler.

PENCILwas designed with following main objectives:

Sequential Semantics. We choose sequential semantics in order to simplify DSL-to-PENCIL
compiler development and the learning curve of an expert directly developing in PENCIL. Note
that even with the sequential semantics the user can still express the parallelization information
but will avoid committing to any particular pattern(s) of parallelism.

portability. Any standard non-parallelizing C99 compiler that supports GNU C attributes should
be able to compile PENCIL. This ensures portability to platforms without OpenCL/ CUDA
support and allows existing tools to be used for debugging sequential PENCILcode.

Ease of analysis. The language should simplify static code analysis, to enable a high degree
of optimization. The main restriction of this is that the use of pointers is disallowed, except in
specific cases.

Support for domain-specific information. PENCILshould provide facilities that allow a domain
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expert or a DSL-to-PENCILcompiler to convey, in PENCIL, domain-specific information that can
be exploited by the PENCILcompiler during optimization.

Figure 3.1 – A high level overview of the PENCILcompilation flow

Figure 3.1 shows a high level overview of our PENCILcompiler framework. At the top level a DSL
program is translated into PENCILby a DSL-to-PENCIL compiler. We expect all domain-specific
optimizations are performed before PENCILtranslation. We use a PPCG as our PENCILcompiler
which is modified to handle all PENCILextensions. PPCG is a polyhedral optimization frame-
work that performs loop nest transformations, parallelization, data locality optimization and
generates efficient OpenCL or CUDA code. It extracts all the addition information provided
through PENCILextensions and uses this information while performing above optimizations. This
separation of domain specific optimizations and general loop level optimizations make PENCILa
lightweight general-purpose language applicable to wide range of DSLs. Our framework also
supports auto-tuning of generated code to find optimal parameter values for tile sizes, block sizes,
grid sizes etc.. for a given target architecture.

We detail the most important restrictions imposed by PENCILfrom the point of view of enabling
GPU-oriented compiler optimizations. The PENCILspecification [BCG+15] contains the rules in
full.

Sized, non-overlapping arrays. Arrays must be declared using the C99 variable-length array
syntax [ISO99]; array function arguments must be declared using pencil_attributes, a
macro expanding to the restrict and the const C99 type qualifiers and to the static C99
keyword. During optimization, the PENCILcompiler thus knows the length of arrays, and that
arrays do not overlap.

Pointer restrictions. Pointer declarations and definitions are allowed in PENCIL, but pointer
manipulation (including arithmetic) is not, except that C99 array references are allowed as

22



3.1. Overview of PENCIL

arguments in function calls. Pointer dereferencing is also not allowed except for accessing C99
arrays. The restricted use of pointers is important for moving data between different address
spaces of hardware accelerators, as it essentially eliminates aliasing problems.

No recursion. Recursive function calls are not allowed, because accelerator programming
languages such as OpenCL forbid this.

Structured for loops. A PENCILfor loop must have a single iterator, an invariant start value,
an invariant stop value and a constant increment (step). Invariant in this context means that
the value does not change in the loop body. By precisely specifying the loop format we avoid
the need for a sophisticated induction variable analysis. Such an analysis is not only complex
to implement, but more importantly results in compiler analyses succeeding or failing under
conditions unpredictable to the user.

The main constructs introduced by PENCILinclude the assume builtin function, the independent
directive, summary functions and the kill builtin function. They are described here very briefly,
for a complete description please refer to [BCG+15, BBC+15].

3.1.1 Summary Functions

Summary functions are used to describe the memory access patterns of (1) library functions
called from PENCILcode, for which source code is not available for analysis, and (2) non-
PENCILfunctions called from PENCILcode, as they are otherwise difficult to analyze. The use of
summary functions enables more precise static analysis. Summary functions enable non static
affine programs

Figure 3.2 shows an example use of summary functions. The code calls the function fft32 (Fast
Fourier Transform). This function only reads and modifies (in place) 32 elements of its input array
in, it does not modify any other parts of the input array. Without a summary function the compiler
conservatively assumes that the whole array passed to fft32 is accessed for reading and writing.
Such a conservative assumption prevents parallelization. The effect of function call fft32 is
summarized by the function summary_fft32. The pencil compiler derives accurate memory
access information (reads and writes of 32 elements) summary_fft32 enabling parallelization
of the loop nest.

Summary function is a powerful construct. It enables polyhedral analysis and transformations
for non affine code. Traditional polyhedral compilers can handle static affine code with only
affine conditionals. For the codes with non affine code and data dependent conditionals one can
create a function encapsulating such code and provide conservative memory accesses information
through summary function. A polyhedral compiler can now perform analyses and transformations
based on the memory access information in the summary function. We were able to pencilize
many large benchmarks with non affine codes and data dependent conditionals using summary
functions.
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1 __attribute__((pencil_access(summary_fft32)))
2 void fft32(int i, int j, int n,
3 float in[pencil_attributes n][n][n]);
4

5 int ABF(int n, float in[pencil_attributes n][n][n])
6 {
7 // ...
8 for (int i = 0; i < n; i++)
9 for (int j = 0; j < n; j++)

10 fft32(i, j, n, in);
11 // ...
12 }
13

14 void summary_fft32(int i, int j, int n,
15 float in[pencil_attributes n][n][n]);
16 {
17 for (int k = 0; k < 32; k++)
18 __pencil_use(in[i][j][k]);
19 for (int k = 0; k < 32; k++)
20 __pencil_def(in[i][j][k]);
21 }

Figure 3.2 – Example code illustrating the use of summary functions

3.1.2 Assume Builtin

__pencil_assume is an intrinsic function __pencil_assume(e), where e is a logical ex-
pression, indicates that e is guaranteed to hold whenever the control flow reaches the intrinsic.
This knowledge is taken on trust by the PENCILcompiler, and may enable generation of more
efficient code. An assume statement allows a programmer to communicate high level facts in the
generated code.

A general 2D convolution in image processing is a a good example that demonstrates the use
of __pencil_assume. This image processing kernel calculates the weighted sum of the area
around each pixel using a kernel matrix for weights. For a given application if it is sufficient to
consider that the size of the convolution matrix (the matrix that hols the convolution kernel) less
then 15×15. This can be expressed using the assume builtin as follows:

1 __pencil_assume(kernel_matrix_rows <= 15);
2 __pencil_assume(kernel_matrix_cols <= 15);

3.1.3 Independent Directive

The independent directive is used to annotate loops. It indicates that the desired result of
the loop execution does not depend in any way upon the execution order of the data accesses
from different iterations. In particular, data accesses from different iterations may be executed
simultaneously. In practice, the independent directive can be used to indicate that the marked
loop does not have any loop carried dependence (i.e., it could be run in parallel).
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3.1.4 PENCILKill

The __pencil_kill builtin function allows the user to refine dataflow information within and
across any control flow region in the program. It is a polymorphic function that signifies that its
argument (a variable or an array element) is dead at the program point where __pencil_kill
is inserted, meaning that no data flows from any statement instance executed before the kill to
any statement instance executed after.
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3.2 Reduction built-ins

Let us now present the PENCILextensions to express user-defined reductions. Figure 3.3 shows
a sample reduction code of complex number multiplications. Automatic techniques for the
detection of reductions have been proposed; see [DSHB15] for a survey of the polyhedral ones.
However, most of these techniques can only detect a simple reduction with standard operators
such as sum, max, min, etc. Real-world applications often involve user-defined reductions with
custom reduction operators and user-defined data types. Moreover, reductions might be applied
only to a range of array indexes. Automatic detection techniques are expensive and fail to
detect such complex user-defined reductions. Often the programmer or the code generator for a
high-level, domain-specific language, readily knows all information related to reductions. Hence,
we provide PENCILextensions that will allow a programmer to easily express arbitrary reductions.

We analyzed many benchmarks from different suites (SHOC, Rodinia, PolyBench, SLAMBench,
etc.) and many DSLs (linear algebra, image processing, signal processing, etc.). Based on these,
and considering the semantic constraints of embedding custom reduction information into a
statically compiled imperative language with first order functions, we designed the following
extensions that are natural and flexible enough to express all the reductions we have encountered.
The programmer or DSL compiler needs to convey the following pieces of information regarding
reductions to the underlying compiler: reduction operator, identity element and reduction domain.
The reduction operator is a commutative and associative function of two arguments that returns
one value of the same type. The identity element of the reduction operator is used to initialize the
temporary variables that hold the intermediate result. The reduction domain represents the set of
iterations for which the reduction operator is called, possibly spanning multiple nested loops.

Figure 3.4 shows a sample reduction kernel taken from the Srand benchmark of the Rodinia suite.
Figure 3.5 shows the PENCILversion of Figure 3.4. All the information regarding reductions is
expressed using the following two PENCILextensions: __pencil_reduction_var_init and
__pencil_reduction.

3.2.1 Reduction Initialization Builtin

__pencil_reduction_var_init is an intrinsic function that is used to express the iden-
tity element of the reduction operator. The first argument of this function is the address of
the reduction variable. A reduction variable can be a scalar or an array element of a built-in
type or a user-defined data type as in the example in Figure 3.6. The second argument is a
function that will take reduction variable as an input and initialize it with the identity element.
Having a simple function to initialize reduction variable provides the flexibility to handle ini-
tialization of any user-defined data types such as complex numbers. The function provided in
__pencil_reduction_var_init is called by the compiler whenever it wants to initialize the
temporary variable required to compute the reductions in parallel. This intrinsic function also
marks the beginning of reduction domain.
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1 typedef struct COMPLEX {
2 int a;
3 int b;
4 } Complex;
5

6 Complex multiply(Complex x,Complex y) {
7 Complex z;
8 z.a = x.a*y.a - x.b*y.b;
9 z.b = x.a*y.b + x.b*y.a;

10 return z;
11 }
12

13 Complex Reduce(const int N, Complex input[N]){
14 int i;
15 Complex product = {1.0, 0.0};
16

17 for(i=0;i<N;i++)
18 product = multiply(product, input[i]);
19

20 return product;
21 }

Figure 3.3 – Complex number multiplication

3.2.2 Reduction Builtin

__pencil_reduction is another intrinsic function that is used to express a single reduction
operation. The first argument for this function must be the address of the reduction variable. The
second argument must be the current reduction element. The third argument is a function that
implements the reduction operator. This function must accept two variables which are of the
same type as the reduction variable and return the result of reduction operator. This function
is assumed to be both commutative and associative. Every reduction variable must have an
associated __pencil_reduction_var_init and __pencil_reduction.

The reduction domain is the set of all the instances of __pencil_reduction function. __pencil_reduction
and __pencil_reduction_var_init are flexible enough to express most user-defined re-

ductions.

3.2.3 Related work

Many programming languages provide high-level abstractions to express user-defined reductions.
Google’s Map Reduce [DG08] framework provides parallelization API through which a user
can specify custom reduction functions. Intel TBB [Rei07] provides parallel reduction templates
that can be specialized through custom reduction methods. Similar to TBB, a user can express
reductions in PPL [Mic] using parallel reduction templates. In both cases the user needs to pass
explicitly the range of values to be reduced. Cilk++ [FHLLB09] supports a limited number of
reduction operators which are used to eliminate the contention of shared reduction variables by
performing reductions in a lock-free manner.

MPI [MPI96] includes support for several built-in reduction operators as well as the ability to
define custom reduction operators in the context of distributed computing. In MPI, a user needs
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1 int srand_reduction(int niter, int Nr, int Nc,
2 float image[Nr][Nc]){
3 for (int iter=0; iter<niter; iter++) {
4 float sum = 0.0; //S1
5 float sum2 = 0.0; //S2
6

7 for (int i = 0; i < Nr; i++) {
8 for (int j = 0; j < Nc; j++) {
9 sum += image[i][j]; //S3

10 sum2 += image[i][j] * image[i][j]; //S4
11 }
12 }
13

14 float meanROI = sum / NeROI; //S5
15 float varROI = (sum2 / NeROI) - meanROI*meanROI;
16 float q0sqr = varROI / (meanROI*meanROI);
17

18 diffusion( Nr, Nc, q0sqr, image, c);
19 }
20 }

Figure 3.4 – Reduction from Rodinia’s Srand benchmark

to create a custom function with fixed syntax which will be called by runtime while reduction is
performed across multiple nodes. ZPL [DCS02] relies on overloading for the specification of
user defined reductions. The user needs to create two functions with specific signatures, one to
return the identity element and another function that implements reduction operator.

OpenMP 3.0 [Opea] and OpenACC [WSTaM12] support built-in reduction operators through
declarative pragma syntax. OpenMP 4.0 [Opeb] now supports user-defined reductions as well,
specifying the custom reduction function and identity element through #pragma omp declare

reduction. One may use this user-defined reduction in a #pragma omp parallel for

reduction directive. The pragma is associated with a specific for loop which forms the domain
of the reduction. If multiple loop nests form the reduction domain, it is not directly possible to
express it through OpenMP pragmas. The programmer needs to modify the loop structure to
handle such cases. In our proposed approach the nesting depth of the reduction and its domain
are inferred from reduction builtin locations, and such that the programmer does not need to
modify the loop structure. Also, in OpenACC the reduction variable has to be scalar, while in our
approach the reduction variable can be an array element with arbitrary subscript expression (e.g.,
a histogram computation).
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1 void initialize(float *val) {
2 *val = 0.0;
3 }
4 float reduction_sum(float v1, float v2){
5 return v1 + v2;
6 }
7

8 void srand_reduction(int niter, int Nr, int Nc,
9 float image[Nr][Nc]){

10 for (int iter=0; iter<niter; iter++) {
11 float sum;
12 float sum2;
13 __pencil_reduction_var_init(&sum2, initialize);
14 __pencil_reduction_var_init(&sum, initialize);
15

16 for (int i = 0; i < Nr; i++) {
17 for (int j = 0; j < Nc; j++) {
18 __pencil_reduction(&sum, image[i][j],
19 reduction_sum);
20 __pencil_reduction(&sum2, image[i][j] * image[i][j],
21 reduction_sum);
22 }
23 }
24

25 float meanROI = sum / NeROI;
26 float varROI = (sum2 / NeROI) - meanROI*meanROI;
27 float q0sqr = varROI / (meanROI*meanROI);
28

29 diffusion( Nr, Nc, q0sqr, image, c);
30 }
31 }

Figure 3.5 – Example from Rodinia’s Srand reduction in PENCIL

1 void initialize(float *val){
2 *val = 0.0;
3 }
4 float reduction_sum(float v1, float v2){
5 return v1 + v2;
6 }
7

8 void kernel_correlation(int M, int N,
9 float data[M][N], float mean[M]){

10 for (int j = 0; j < M; j++) {
11 __pencil_reduction_var_init(&mean[j], initialize);
12 for (int i = 0; i < N; i++)
13 __pencil_reduction(&mean[j], data[i][j],
14 reduction_sum, NULL);
15 mean[j] /= N;
16 }
17 }

Figure 3.6 – Example from PolyBench’s correlation benchmark
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Figure 3.7 – Original reduction domain and dependences
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Figure 3.8 – Modified reduction dependences

3.3 Modeling Reductions in Polyhedral Model

3.3.1 Reduction Domain

The reduction domain is defined as the set of all iterations on which the reduction operator
is applied. In pragma-based approaches such as OpenMP or OpenACC, the reduction do-
main is simply the loop that is annotated with a reduction pragma. In some benchmarks
such as the Rodinia’s Srand benchmark shown in Figure 3.4, the reduction domain is not
a single for-loop. The programmer needs to coalesce (flatten) multiple loops into a single
one before annotating it with pragmas. In PENCIL, since the programmer uses builtin func-
tions that are not associated with a specific loop, no modifications of the control flow is re-
quired. Note that the reduction domain not necessary the same as the iteration domain of
__pencil_reduction statement. For example, the iteration domain of the statement S3 in
Figure 3.4 is {S3(i ter, i , j ) : 0 ≤ i ter ≤ ni ter ;0 ≤ i < nr ;0 ≤ j < nc} whereas, the reduction
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domain for the reduction in S3 is {S3(i , j ) : 0 ≤ i < nr ;0 ≤ j < nc}. The reduction opera-
tion always starts with the initialization of the reduction variable. The programmer explic-
itly marks the reduction variable initialization through __pencil_reduction_var_init.
the reduction domain is derived from the iteration domains of __pencil_reduction and
__pencil_reduction_var_init statements. For each __pencil_reduction statement,
the reduction variable—the first argument of the function—is looked up find the dominating
__pencil_reduction_var_init defining the same reduction variable. The reduction domain
is simply the subset of the iteration domain of __pencil_reduction parametrized on the loop
iterators of __pencil_reduction_var_init.

3.3.2 Reduction Dependences

Figure 3.7 depicts the Read-after-Write (RAW) dependences of a single reduction for the program
in Figure 3.4. The arrows between iterations indicate the flow of data, i.e., a value produced by
the source iterator is read at the destination iteration. Because the reduction variable is read and
written in all iterations of the reduction domain, there is a serial dependence between them. This
dependence between iterations of the reduction domain is called a reduction dependence. This
dependence usually forces the serial execution of the reduction. Since the reduction operator
is associative, we can perform the reductions in parallel and then combine the partial results
to obtain a final reduction value. The associativity of the reduction operation is abstracted by
relaxing the reduction dependences. We can precisely compute these reduction dependences from
the reduction domain. The reduction of partial results and synchronization needed to produce
the end result is modeled by introducing an additional node in the dependence graph, called a
merge node, and adding a new dependence from all iterations in reduction domain to the merge
node as shown in Figure 3.8. These are called reduction isolation dependences are necessary to
prevent the use of the reduction variable before the reduction operation is complete when the
reductions are performed in parallel. The merge node is inserted right after the reduction loops
in the input AST. The relaxation of the serial reduction dependences into parallelism-friendly
reduction isolation dependences will accurately model the flow of data for the parallel execution
of reductions.

3.3.3 Reduction-Enabled Scheduling

A schedule represents the execution order of statement instances in a program. Various transfor-
mations are performed by changing the schedule. Dependences are used to find the valid set of
schedules. A schedule is said to be valid if does not violate dependences in the input program,
i.e., all the source iterations of dependences are executed before the destination iterations. State-
of-the-art polyhedral compilers are seriously limited in the application of affine transformations
in the presence of reductions, because of the serial reduction dependence. They do not exploit the
associativity of the reduction operator. The explicit dependence manipulation as explained in
the previous section enables transformations such as tiling and parallelization of reduction loops.
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Because the serial reduction dependences are relaxed, the polyhedral scheduler can now safely
reorder the reduction iterations.

A practical and automatic scheduling algorithm like Pluto takes a dependence graph as input
and recursively constructs schedule. At each level of the recursion, the algorithm first checks
for the components that do not depend on each other and hence can be scheduled independently.
Within each component, the algorithm uses an ILP solver to construct a sequence of one-
dimensional affine functions (hyperplanes), such that each of these functions independently
respect all dependences and are optimal based on heuristics such as induced communication.
After the construction of a band is completed, the dependence graph is updated to only contain
dependences that are mapped to the same values by the current hyperplane, and the process is
repeated until the number of hyperplanes found is equal to the dimensionality of the loop. Our
dependence based abstraction of reductions fits well with the automatic scheduling algorithms
enabling affine transformations for user defined reductions. Because the relaxation of serial
reduction dependences, the reduction iterations can now be reordered and parallelized. The
new merge dependences represent the required data-flow of combining the partial reduction
results to produce the final reduction value. It is essential for the scheduler to know about the
cost of performing reductions in parallel and merge dependences accurately represent this cost.
For example, consider a loop nest with a parallel loop and a reduction loop. The scheduler
should choose the parallel loop with no loop-carried dependences as the outermost loop rather
than the reduction loop because of the cost of merge dependences. Hence, with this approach
reduction parallelism is exploited and yields communication-free parallelism. Many of the
previous approaches that just relax the reduction dependence have the problem of treating both
types of parallelism equally which could be lead to poor schedules and additional communication.

3.3.4 Related work

Modeling reductions was commonly done implicitly, e.g., by ignoring the reduction dependences
during a post parallelization step [Jou86, JD89, PP94, RF93, PE95, RP99, XKH04, VSHS14].
The first one to introduce reduction dependences, were Pugh and Wonnacott [PW94b]. Similar to
most other approaches [RF94, SKN96, RF00, GR06] the detection and modeling of reductions
was performed on imperative statements and utilizing a precise but costly access-wise dependence
analysis. In the works of Redon and Feautrier [RF00, RF94] the reductions are modeled as
Systems of Affine Recurrence Equations (SAREs). Array expansion allows the elimination of
memory-based dependences induced by reductions and facilitate the recognition of induction
patterns. They also propose a polyhedral scheduling algorithm that optimally schedules reductions
together with other statements, assuming reductions are computable in single time step. Such
atomic reduction computation simplifies scheduling choices while preventing schedules that
reorder or interleave reduction statement instances with other statement instances. Zou et
al. [ZR12] extended the work of Redon and Feautrier [RF94] by removing the restriction of an
atomic reduction computation. Their scheduling algorithm tries to minimize the latency while
scheduling reductions. Compared to these works our dependence based abstraction works on
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existing practical polyhedral scheduling algorithms such as Pluto [BHRS08b]. Our approach
does not require any preprocessing such as array expansion while dependences accurately model
the specific atomicity constraints of reductions.

In contrast to polyhedral optimizations for reductions, Gupta et al [GR06] propose techniques
to exploit the associativity and commutativity of reductions to decrease the complexity of a
computation in the context of dynamic programming. Their method reuses intermediate results
of reduction computations.

Stock et al. [SKG+14] describe how reduction properties can be used to reorder stencil computa-
tions, to better exploit register reuse and to eliminate loads and stores. However neither do they
describe the detection method nor does their method enable scheduling for generic reductions.

Doerfert et al. [DSHB15] propose compiler techniques to automatically detect reductions on
LLVM IR. They also propose a model to relax memory-based dependences to enable polyhedral
scheduling in the presence of reductions. However, their techniques cannot detect reductions on
arbitrary data types such as complex number multiplication and their reduction modeling do not
account for the cost of reductions while scheduling them.
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3.4 Code Generation

Parallelizing reductions on GPUs is a challenging task. Reductions typically have low arithmetic
intensity performing just one operation per memory load and hence are bound by the device’s
maximum memory bandwidth. The performance of reductions is often measured by the effective
bandwidth achieved by a given implementation. Vendor and highly tuned libraries such as CUB
and Thrust provide an optimized implementation of reductions achieving performance above
90% percent of the peak bandwidth.

3.4.1 Optimizations for Reduction code on GPUs

The problem of Optimizing reductions in CUDA is well studied and the list of all the optimizations
and their impact on performance for a single reduction is explained in [Mar]. The important
optimizations are listed below.

Kernel Decomposition. The reduction is parallelized at two levels, matching the thread hierar-
chy of the GPUs. At the first level, each thread block is allocated a portion of the reduction
domain. Within each thread block, a tree-based decomposition is used to perform local
reductions and to produce partial results. These partial results are stored in global memory.
At the second level, another kernel is launched to reduce the partial results and produce the
final value.

Shared memory utilization. Within each thread block, multiple threads use shared memory to
keep the intermediate reduction values. The tree-based reduction is performed on these
values while avoiding divergent branches. Shared memory bank conflicts are avoided by
reordering memory loads making use of the reduction operator’s commutativity.

Complete unrolling. The kernel is specialized by completely unrolling the reduction tree. This
is done using templates to generate a specialized kernel for different block sizes. This
eliminates unnecessary control flow and synchronization between the threads in a thread
block as the reduction proceeds.

Using shuffle instructions. Shuffle instructions [Nvic] can be used to accelerate fine-grained
reductions within a warp. These special instructions control the exchange of data between
threads, eliminating data accesses to shared memory and the associated synchronizations.

Multiple reductions per thread. Each thread loads and reduces multiple elements into shared
memory before the tree-based reduction in shared memory. More work per thread will help
to hide the memory latency. The optimal number of elements per thread depends on the
architecture and is determined by tuning this parameter along with the number of blocks
and threads per block.
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3.4.2 Template Specialization for User-defined Reductions

A generic polyhedral optimizer such as PPCG can perform various optimizations such as
shared memory allocation and register promotion, memory coalescing, etc.for generic pro-
grams [VJC+13]. It uses heuristics to determine the profitability of such optimizations. However,
it cannot perform all the specialized optimizations required for highly efficient reductions. Some
of these optimizations are specific to reductions, and applicable only to specific hardware or
device characteristics. Hence it is difficult to come up generic heuristics for these optimizations
in order to make them applicable to generic programs. These optimizations are crucial to achieve
close-to-peak performance on GPUs. Hence, we follow a template-based approach for gener-
ating efficient code for user-defined reductions. We precisely identify the reductions through
programmer-provided constructs, hence can generate efficient reduction code capturing all the
optimizations above, even on user-defined reductions.

User-defined reduction operator. A user-defined reduction is characterized by reduction opera-
tor, the identity element of the operator and reduction domain. The new reduction operator
is expressed in a separate PENCILfunction. It is easy to adapt the parallel template to
user-defined reductions by replacing the reduction operation with the user-defined function,
and similarly for the partial value initialization. All these function calls are inlined to
eliminate overhead. The reduction domain is equally distributed among multiple thread
blocks.

Shared memory allocation. In the parallel reduction template, each thread will be allocated
temporary storage in the shared memory to store the partial results. The size of shared
memory required per thread is equal to the size of the reduction variable. It is important to
compute the total required size for all threads. The total shared memory available varies
from device to device. The available shared memory limits certain transformations and
thread block sizes. The maximum amount of shared memory on the device is an input to
our framework. We then compute the shared memory required to implement the reduction
and use it to calculate the maximum thread block size.

Fusing multiple reductions. The template can also be adapted to generate code for multiple
fused reductions. Fusion can help increase the arithmetic intensity of the reduction. We
use the following heuristic to determine when to fuse. Two reductions are fused if there
is an overlap with global data accessed between them. For example, if two separate
reductions operate on same input array, then these two reductions are fused and a single
reduction template is generated. This optimization is always profitable since by fusion we
are enabling data reuse in shared memory. Existing polyhedral techniques can be used to
assess the correctness of such a fusion transformation, taking into account all side-effects
involved in associated computations involved in the reductions (inductively or not). Code
generation for fused reductions is a straightforward extension of the above-mentioned
technique: the shared memory required is the sum of shared memory requirement for
individual reductions and the two reduction functions are called one after another in the
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template.

Auto-tuning. The performance of the template depends on the target GPU. The following two
parameters are tuned to obtain optimal performance on a given architecture: number of
threads, and number of thread blocks. The reduction template supports powers of two only
for the number of threads, so there are only few values considered starting from 2 and up to
the maximum allowed by the device. The maximum is also limited by the required shared
memory for the reduction. The thread block size varies over the 2 to 256 interval.

36



3.5. Experimental Evaluation

3.5 Experimental Evaluation

We implemented PENCILreduction support in a developmental branch of PPCG. Our framework
takes a C program with PENCILfunctions as input, with reduction kernels according to the
specification. It generates CUDA code automatically, which is then auto-tuned to a particular
GPU architecture. Since the search space for auto-tuning is relatively small for our reduction
template, we could conduct an exhaustive search of the optimization space within minutes on all
examples.

We compare the performance of the generated code with highly tuned libraries such as CUB v1.5.1 [Nvia]
and Thrust v1.8.1 [Nvib]. Both of these libraries provide APIs for performing reductions. The
user can customize them by specifying a reduction operator and identity value. Note that these
libraries are optimized for a particular GPU architecture. CUB, for example, has an internal
database of the optimal values for thread block size, number of threads and number of items
per thread for all known architectures. We also compare the performance with the OpenACC
PGI 2015 compiler [The], which provides high-level directives, including reduction pragmas, to
program accelerators. Note that the PGI OpenACC compiler currently only supports a limited set
of pre-defined reduction operators.

We evaluate performance on the following three GPU architectures: a desktop NVIDIA GTX
470 with peak memory bandwidth of 133.9GB/s, the more advanced NVIDIA Quadro K4000
with peak bandwidth of 134.9GB/s, and the low power embedded GPU NVIDIA Jetson TK1
with peak bandwidth of 14.78GB/s. We do not present OpenACC numbers on TK1 because the
PGI compiler does not support this this architecture. All the benchmarks are compiled with the
NVIDIA CUDA 7.5 toolkit, with the -O3 optimization flag. Reduction performance is measured
as the effective bandwidth utilized by the benchmark, and is computed using

Bandwidth= InputArraySize/ReductionTime.

Each benchmark is run 100 times and the average of these times is taken as the reduction time. We
also perform a dry-run before benchmarking to hide device configuration and kernel compilation
time. In the graphs below, performance numbers are presented as a percentage of peak bandwidth
of the device.

3.5.1 Single Reduction Kernel

The first benchmark is a single sum reduction over an array of 222 elements. This corresponds
to a single call in CUB and Thrust, and to a single for-loop marked with a reduction pragma in
OpenACC. The performance of the sum benchmark for three different data types is shown in
Figures 3.9, 3.10 and 3.11, abbreviated as SumInt, SumFloat and SumDouble. CUB achieves an
impressive 92.4% of the peak device bandwidth for int and 81.5% for double on the GTX 470.
The performance of Thrust is slightly lower at 73.8% for int and float. OpenACC is only able to
achieve 23.7% for int and 45.2 for double, whereas the PENCILreduction code generated by our
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framework achieves 90.2% of the peak.

The performance of CUB on the embedded TK1 is only 37.5% of peak for int and 65.5% for
double, whereas PENCILcode achieves 78.9% and 79.91%, respectively. We suspect that both
CUB and Thrust libraries are not tuned for the TK1 platform, whereas our generated code
benefited from auto-tuning. This shows the importance and effectiveness of auto-tuning even
after all optimizations have been applied and a suitable template is being used. Table 3.1 collects
the optimal values for the number of thread blocks and the number of threads. Note that the
exhaustive search does not take much time because of the limited search space for reduction
templates.

Benchmark GTX 470 Quadro K4000 TK1
SumInt 84,128 128,128 222,128
SumFloat 84,128 128,128 103,512
SumDouble 120,256 124,64 253,256

Table 3.1 – Optimal parameter values for the number of thread blocks and for the the thread block
size

3.5.2 Srand Reduction kernel

The Srand reduction kernel shown in Figure 3.4 consists of two reductions on the same array. It
is quite straightforward to express such reductions in OpenACC and PENCIL, whereas CUB or
Thrust involve two library calls along with some additional processing. One reduction call to
compute sum, an intermediate step to compute the square of the input, and then another reduction
call to compute the sum of squares. This is clearly inefficient as input array is traversed twice to
perform reductions separately. This kernel illustrates the limitations of library-based approaches
in real world applications: Figures 3.9, 3.10 and 3.11 show the performance of the Srand kernel
abbreviated as SrandInt, SrandFloat and SrandDouble on different GPU architectures. The
performance of PENCILand OpenACC is almost identical to the case of a single reduction kernel.
Because the array is scanned only once, reduction time does not vary much. On the other hand, for
both CUB and Thrust, the time taken is twice that of a single reduction because of the two array
traversals. This kernel illustrates the benefits of fusing multiple reductions, as evaluating multiple
reduction operators per memory access made much more effective use of the bandwidth. The
OpenACC compiler was also able to fuse the two reductions because both reductions appeared in
the same loop. This restriction does not apply to our framework, which supports the fusion of
different reduction kernels.

3.5.3 SLAMBench reduction kernel

SLAMBench [NBZ+14] is a computer vision benchmark for 3D modeling and tracking. The
benchmark contains a reduction kernel with 32 different reductions. It is straightforward to
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Figure 3.9 – Performance on NVIDIA GeForce GTX 470

SumInt SumFloat SumDouble SrandInt SrandFloat SrandDouble Slambench

0

50

100

72 73 75

37 37
29

65 65
71

32 32 31
17 17

30
17 17

30

4

70 70
64 69 69

42

16
8%

Pe
ak

T
hr

ou
gh

pu
t

CUB Thrust PGI PENCIL Manual

Figure 3.10 – Performance on NVIDIA Quadro K4000
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Figure 3.11 – Performance on NVIDIA TK1

port these reductions in PENCILand OpenACC whereas it is tedious and inefficient to do so in
CUB and Thrust, as they involve multiple calls to the reduction API. The comparison of our
framework with OpenACC and with SLAMBench’s manual CUDA implementation is shown
in Figures 3.9, 3.10 and 3.11. Because there are 32 reductions performed for a single element,
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the memory bandwidth is no longer the bottleneck. PENCILoutperforms both OpenACC and
the manual implementation. The latter is almost twice as fast as OpenACC. The SLAMBench
implementation uses shared memory to store intermediate reduction values while reductions are
performed in parallel.

Benchmark OpenACC PENCIL

GTX 470 0.51× 1.53×
Quadro K4000 0.45× 2.00×
TK1 − 1.97×

Table 3.2 – Speedup of the SLAMBench reduction kernel relative to the manual implementation
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4 SLAMBench

SLAM systems aim to perform real-time localisation and mapping “simultaneously” for a sensor
moving through an unknown environment. SLAM could be part of a mobile robot, enabling the
robot to update its estimated position in an environment, or an augmented reality (AR) system
where a camera is moving through the environment, allowing the system to render graphics at
appropriate locations in the scene (e.g. to illustrate repair procedures in-situ or to animate a
walking cartoon character on top of a table). Localisation typically estimates the location and
pose of the sensor (e.g. a camera) with regard to a map which is extended as the sensor explores
the environment.

The KinectFusion [NIH+11] algorithm utilises a depth camera to perform real-time localisation
and dense mapping. A single raw depth frame from these devices has both noise and holes.
KinectFusion registers and fuses the stream of measured depth frame obtained as the scene is
viewed from different viewpoints into a clean 3D geometric map. kinectFusion normalizes each
incoming depth frame and applies a bilateral filter (Preprocess); before computing a point cloud
(with normals) for each pixel in the camera frame of reference. Next, KinectFusion estimates
(Track) the new 3D pose of the moving camera by registering this point cloud with the current
global map using a variant of iterative closest point (ICP). Once the new camera pose has been
estimated, the corresponding depth map is fused into the current 3D reconstruction (Integrate).
KinectFusion utilises a voxel grid as the data structure to represent the map, employing a truncated
signed distance function (TSDF) to represent 3D surfaces. The 3D surfaces are present at the
zero crossings of the TSDF and can be recovered by a raycasting step, which is also useful for
visualising the reconstruction. The key advantage of the TSDF representation is that it simplifies
fusion of new data into existing data to the calculation of a running average over the current
TSDF volume and the new depth image. KinectFusion has been adopted as a major building
block in lot of recent SLAM systems.

SLAMBench, is a benchmark that provides portable, but untuned, KinectFusion [NIH+11] imple-
mentations in C++ (sequential), OpenMP, CUDA and OpenCL for a range of target platforms.
SLAMBench includes techniques and tools to validate an implementation’s accuracy using the
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Figure 4.1 – A high level overview of the SLAMBench pipeline

Figure 4.2 – SLAMBench GUI

ICL-NUIM dataset [HWMD14] along with algorithmic modifications to explore accuracy and
performance tradeoffs. ICL-NUIM [HWMD14] is a high-quality synthetic dataset providing
RGB-D sequences for 4 different camera trajectories through a living room model. An absolute
trajectory error (ATE) is calculated as the difference between the ground truth and the estimated
trajectory of a camera produced by a SLAM implementation, this enables system accuracy to
be measured at each frame.The ICL-NUIM benchmark provides not only a number of realistic
pre-rendered sequences, but also open source code that can be used by researchers in order to
generate their own test data as required. As the unmodified ICL-NUIM dataset is the input of
the SLAMBench benchmark any user can run SLAMBench in a straightforward way on other
datasets.
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Kernels Pipeline Pattern In Out %
acquire Acquire n/a pointer 2D 0.03
mm2meters Preprocess Gather 2D 2D 0.06
bilateralFilter Preprocess Stencil 2D 2D 33.68
halfSample Track Stencil 2D 2D 0.05
depth2vertex Track Map 2D 2D 0.11
vertex2normal Track Stencil 2D 2D 0.27
track Track Map/Gather 2D 2D 4.72
reduce Track Reduction 2D 6x6 2.99
solve Track Sequential 6x6 6x1 0.02
integrate Integrate Map/Gather 2D/3D 3D 12.85
raycast Raycast Search/Stencil 2D/3D 2D 35.87
renderDepth Rendering Map 2D 2D 0.12
renderTrack Rendering Map 2D 2D 0.06
renderVolume Rendering Search/Stencil 3D 2D 9.18

Table 4.1 – SLAMBench Kernels

4.1 SLAMBench Kernels

Table 4.1 summarises the 14 main computationally significant computer vision kernels contained
in SLAMBench The following is a description of each kernel:

• acquire: acquires a new RGB-D frame. This input step is included explicitly in order to
account for I/O costs during benchmarking, and for real applications.

• mm2meters: transforms a 2D depth image from millimeters to meters. If the input image
size is not the standard 640x480, only a part of the image is converted and mapped into the
output.

• bilateralFilter: is an edge-preserving blurring filter applied to the depth image. It reduces
the effects of noise and invalid depth values.

• halfSample: is used to create a three-level image pyramid by sub-sampling the filtered
depth image. Tracking solutions from low resolution images in the pyramid are used as
guesses to higher resolutions.

• depth2vertex: transforms each pixel of a new depth image into a 3D point (vertex). As a
result, this kernel generates a point cloud.

• vertex2normal: computes the normal vectors for each vertex of a point cloud. Normals are
used in the projective data association step of the ICP algorithm to calculate the point-plane
distances between two corresponding vertices of the synthetic point cloud and a new point
cloud.

• track: establishes correspondence between vertices in the synthetic and new point cloud.
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• reduce: adds up all the distances (errors) of corresponding vertices of two point clouds for
the minimisation process. On GPUs, the final sum is obtained using a parallel tree-based
reduction.

• solve: performs a singular value decomposition on the CPU that solves a 6x6 linear system.
A 6-dimensional vector is produced to correct the new estimate of camera pose.

• integrate: integrates the new point cloud into the 3D volume. It computes the running
average used in the fusion.

• raycast: computes the point cloud and normals corresponding to the current estimate of
the camera position.

• renderDepth: visualises the depth map acquired from the sensor using a colour coding.

• renderTrack: visualises the result of the tracking. For each pixel different colours are
associated with one of the possible outcomes of the tracking pass

• renderVolume: visualises the 3D reconstruction from a fixed viewpoint or a user specified
viewpoint.

In addition to these kernels, the SLAMBench pipeline also contains two initialisation kernels
not shown in Table 4.1 namely generateGaussian and InitVolume. These kernels are part of an
initialisation step that is performed only at startup. generateGaussian generates a Gaussian bell
curve and stores it in a 1D array; initVolume initialises the 3D volume.

4.2 Pencilizing SLAMBench Kernels

We were able to port seven out of eleven kernels directly to pencil without using any pencil
directives, as shown in table 4.2. All of these kernels had only affine accesses and are readily
handled by PPCG compiler. We only needed to surround with scop and end scop pragmas.
Additionally, we used __pencil_assume builtins to specify additional information related to
size of loop bounds and image sizes, as shown in 4.3. This information is used by the PPCG
compiler to simplify generated code. With the information provided through __pencil_assume
PPCG was able to generate the kernel without any unnecessary conditionals that is very similar
to manually written kernel is SLAMBench. We are able to achieve only 0.1 FPS(Frames per
Second) compared to 68 FPS with manual SLAMBench kernels. This is because PPCG was not
able to generate kernels for tr ack, r educe and i nteg r ate. These main computational kernels
were executed on CPU resulting in bad performance.

4.3 Summary functions

The i nteg r ate and tr ack kernels have non-affine accesses and PPCG was not able to analyze
the dependences. We encapsulate the core computation in another function and use summary
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1 int mm2meters_pencil(uint outSize_x, uint outSize_y,
2 float out[restrict const static outSize_y][outSize_x],
3 uint inSize_x, uint inSize_y,
4 const ushort in[restrict const static inSize_y][inSize_x],
5 int ratio)
6 {
7 #pragma scop
8 {
9 __pencil_assume(outSize_y < 960);

10 __pencil_assume(outSize_x < 1280);
11 __pencil_assume(outSize_y % 120 == 0);
12 __pencil_assume(outSize_x % 160 == 0);
13 __pencil_assume(outSize_x > 0);
14 __pencil_assume(outSize_y > 0);
15 __pencil_assume(inSize_x > 0);
16 __pencil_assume(inSize_y > 0);
17 for (uint y = 0; y < outSize_y; y++) {
18 for (uint x = 0; x < outSize_x; x++) {
19 int xr = x * ratio;
20 int yr = y * ratio;
21 out[y][x] = in[yr][xr] / 1000.0f;
22 }
23 }
24 }
25 #pragma endscop
26 return 0;
27 }

Figure 4.3 – Pencilized mm2meters kernel

Kernels Building Block Pattern PPCG kernel
mm2meters Preprocess Gather yes

bilateralFilter Preprocess Stencil yes
halfSample Track Stencil yes

depth2vertex Track Map yes
vertex2normal Track Stencil yes

track Track Map/Gather no
reduce Track Reduction no

integrate Integrate Map/Gather no
renderDepth Rendering Map yes
renderTrack Rendering Map yes

renderVolume Rendering Search/Stencil no

Table 4.2 – Pencilizing First attempt, Manual : 68 FPS, PPCG : 0.1 FPS
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1 void integrateKernel_core_summary( ... )
2 {
3 for (int z = 0; z <= vol_size_z; ++z) {
4 const float depthVal = depth[y][x];
5 const short2 volVal = vol_data[z][y][x];
6 vol_data[z][y][x] = volVal;
7 }
8 for (int i = 0; i < depthSize_y; i++)
9 {

10 for (int j = 0; j < depthSize_x; ++j)
11 {
12 __pencil_use(depth[i][j]);
13 }
14 }
15 }
16

17 void integrateKernel_core( ... )
18 __attribute__((pencil_access(integrateKernel_core_summary)));
19

20

21 #pragma scop
22 {
23 for (unsigned int y = 0; y < vol_size_y; y++) {
24 for (unsigned int x = 0; x < vol_size_x; x++) {
25 integrateKernel_core( ... );
26 }
27 }
28

29 }
30 #pragma endscop

Figure 4.4 – Integrate kernel with Summary function

functions to provide conservative affine accesses information. The pencilized i nteg r ate kernel
with summary function is shown in Figure 4.4. The summary function is a very powerful
abstraction that can be used to hide complex data flow and expose only the outer relevant loops
to PPCG. We can use affine loops in the summary functions which provides flexibility to express
arbitrary array accesses to the polyhedral compiler. The summary functions also help reducing
the complexity for the ILP solver inside the polyhedral auto scheduler. The entire summarized
function is treated as a single statement with reads and writes as defined in the summary function.
Hence, with the help of summary function PPCG was able to generate kernels for both i nteg r ate

and tr ack. Table 4.3 shows the performance PPCG generated kernels. We were able to achieve
around one FPS which is much less than the 68 FPS obtained with the manual SLAMBench
kernels.
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Kernels Building Block Pattern PPCG kernel
mm2meters Preprocess Gather yes

bilateralFilter Preprocess Stencil yes
halfSample Track Stencil yes

depth2vertex Track Map yes
vertex2normal Track Stencil yes

track Track Map/Gather yes
reduce Track Reduction no

integrate Integrate Map/Gather yes
renderDepth Rendering Map yes
renderTrack Rendering Map yes

renderVolume Rendering Search/Stencil yes

Table 4.3 – With Summary functions, Manual : 68 FPS, PPCG : 1 FPS

Kernels Building Block Pattern PPCG kernel
mm2meters Preprocess Gather yes

bilateralFilter Preprocess Stencil yes
halfSample Track Stencil yes

depth2vertex Track Map yes
vertex2normal Track Stencil yes

track Track Map/Gather yes
reduce Track Reduction yes

integrate Integrate Map/Gather yes
renderDepth Rendering Map yes
renderTrack Rendering Map yes

renderVolume Rendering Search/Stencil yes

Table 4.4 – With Parallel reductions, Manual : 68 FPS, PPCG : 50 FPS

4.4 Handling Reductions

After using summary functions PPCG was able to generate GPU kernels for all one r educe

function. The earlier version of PPCG was not able to parallelize reduction loops. It used to
generate a kernel in which all the reductions were executed by single GPU thread. This was a
become bottleneck for SLAMBench as the r educe was in the critical path and is executed many
time per single frame. Hence PPCG generated kernels has low performance of around 1 FPS
compared to 68 FPS achieved with manual SLAMBench kernels. This was main motivation
for handling reductions in chapter 3. We used the reduction built-ins as defined in chapter 3 to
express the r educe kernel. PPCG was able to generate efficient parallel reduction kernel for
r educe and performance improved to 50 FPS.
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1 enum prl_mem_flags {
2 // defaults, not necessary to state explicitly, but may make code

more readable what is meant.
3 prl_mem_readable_writable = 0,
4 prl_mem_readable = 0,
5 prl_mem_writable = 0,
6 prl_mem_host_readable = 0,
7 prl_mem_host_writable = 0,
8 prl_mem_dev_readable = 0,
9 prl_mem_dev_writable = 0,

10

11 // Take ownership; i.e. free resource on prl_mem_free
12 prl_mem_host_take = 1 << 0,
13 prl_mem_dev_take = 1 << 1,
14

15 // Whether the buffers are read/written in SCoPs (dev) or outside
(host)

16 prl_mem_host_noread = 1 << 2,
17 prl_mem_host_nowrite = 1 << 3,
18 prl_mem_host_noaccess = prl_mem_host_noread |

prl_mem_host_nowrite,
19 prl_mem_dev_noread = 1 << 4,
20 prl_mem_dev_nowrite = 1 << 5,
21 prl_mem_dev_noaccess = prl_mem_dev_noread | prl_mem_dev_nowrite,
22 };

Figure 4.5 – PRL memory flags

4.5 PRL runtime

We cannot include the entire SLAMBench into one single scop because of the presence of data
dependent outer loop. This loop repeatedly calls track and reduce kernel until the achieved error
is below a threshold value. Hence we only add pargma scops across individual kernels. Before
the kernel execution the PPCG compiler generates data transfer calls from host to device memory
for all the array accessed within a kernel. It also generates device to host transfer calls for all
the arrays that are updated within device after the kernel execution. In SLAMBench we have
sequences of separate kernels generated by PPCG with the data transfer call at the beginning and
the end of each kernel. This results in many redundant data transfers across these kernel launches.
These redundant data transfers have significant impact on the overall performance. In order to
eliminate these we use PRL runtime.

The PRL runtime provides wrapper around memory allocation functions (malloc and free func-
tions named prl_mem_alloc and prl_mem_free), data-transfer functions and kernel launches.
The user can specify additional information through prl_mem_flags enum in prl_mem_alloc.
The various options of prl_mem_flags is listed in Figure 4.5. These option enables programmer
to specify data flow information in the non-pencil regions. The runtime uses these information to
eliminate redundant data transfers. For e.g if an array is only used to store intermediate result
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4.5. PRL runtime

1 reductionoutput = (float*) prl_mem_get_host_mem(prl_mem_alloc(
reductionoutput_size, prl_mem_host_nowrite));

2

3

4 floatDepth = (float*) prl_mem_get_host_mem(prl_mem_alloc(sizeof(
float)* size, prl_mem_host_noaccess));

Figure 4.6 – PRL allocation calls

between two kernels, then we can use prl_mem_host_nowrite option in prl_mem_alloc.
Now the runtime knows that this particular array is not modified by host outside of scops. All the
device-to-host data transfer calls of this array will be no-ops. Thus eliminating all redundant data
transfer. We also extended PRL to dump useful profiling and debugging information for the entire
application. We are able to achieve 65 FPS which is very close to 66 FPS obtained by manually
optimized SLAMBench kernel. The main advantage to using PENCIL for SLAMBench is it
provides portable performance across different architectures. Once the kernels are written in
PENCIL we can use PPCG to generate CUDA or OpenCL or OpenMP kernels automatically.
Hence unlike manual written SLAMBench we don‘t have to maintain three different versions of
the same kernels. Also we can easily tune the kernel parameters such as tile size, block size, grid
size etc. for any given GPU architectures using autotuning.
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5 Unified Model for Spatial Locality
and Coalescing

Modern architectures feature deep memory hierarchies that may affect performance in both
positive and negative ways. CPUs typically have multiple levels of cache memory that speed
up repeated accesses to the same memory cells—temporal locality. Because loads into caches
are performed with cache-line granularity, accesses to subsequent memory cells are also sped
up—spatial locality. At the same time, parallel accesses to adjacent memory addresses may
cause false sharing: caches are invalidated and data is re-read from more distant memory even if
parallel threads access different addresses that belong to the same line. GPUs feature memory
coalescing that group simultaneous accesses from parallel threads to adjacent locations into a
single memory request in order to compensate for very long global memory access times. They
also feature a small amount of fast shared memory into which the data may be copied in advance
when memory coalescing is unattainable. Current polyhedral scheduling algorithms mostly
account for the temporal proximity and leave out other aspects of the memory hierarchy.

We propose to manage all these aspects in a unified way by introducing new spatial proximity
relations into the isl scheduler. They connect pairs of statement instances that access adjacent
array elements. We treat spatial proximity relations as dependences for the sake of reuse distance
computation. Unlike dependences, however, spatial proximity relations do not constrain the
execution order and admit negative distances. We loosely refer to a spatial proximity relation as
carried when the distance along it is not zero. If a schedule function carries a spatial proximity
relation, it results in subsequent statement instances accessing subsequent array elements, and
the distance along relation characterizes the access stride.

Spatial proximity relations can be used to set up two different ILP problems. The first problem,
designed as a variant of the Pluto problem, attempts to carry as little spatial proximity as possible.
The second problem, a variation of Feautrier’s algorithm, carries as many spatial proximity
relations as possible while discouraging skewed schedules. Choosing one or another problem to
find a sequence of schedule functions allows isl to produce schedules accounting for memory
effects. In particular, false sharing is minimized by carrying as little spatial proximity relations
as possible in coincident dimensions. Spatial locality is leveraged by carrying as many spatial
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proximity relations as possible in the last schedule function. This in turn requires previous
dimensions to carry as little as possible. GPU memory coalescing is achieved by carrying as
many spatial proximity as possible in the coincident schedule function that will get mapped to the
block that features coalesced accesses. Additionally, this may decrease the number of arrays that
will compete for the limited place in the shared memory as only those that feature non-coalesced
accesses are considered.

5.1 Modeling Line-Based Access

The general feature of the memory hierarchies we model is that groups of subsequent memory
cells rather than individual elements can be accessed. Although the number of array elements
that form such groups varies depending on the target device and on the size of an element, it
is possible to capture the general trend as follows. We modify the access relations to express
that the statement instance accesses C subsequent elements. The constant C is used to chose
the maximum stride for which spatial locality is considered, for example if C = 4, different
instances of A[5*i] are not spatially related, and neither are statements accessing A[i+5] and
A[i+10].

Conventionally for polyhedral compilation, we assume not to have any information on the internal
array structure, in particular whether a multidimensional array was allocated as a single block.
Therefore, we can limit modifications to the last dimension of the access relation. Line-based
access relations are defined as A ′ =A ◦C where C = {aaa →aaa′ | a′

1..(n−1) = a1..(n−1) ∧a′
n = b an

C c},

and n = dim~a = dim(DomA ). This operation replaces the last array index with a virtual number
that identifies groups of memory accesses that will be mapped to the same cache line. We use
integer division with rounding to zero to compute the desired value. An individual memory
reference may now accesses a set of array elements and multiple memory references that originally
accessed distinct array elements may now access the same set.

The actual cache lines, dependent on the dynamic memory allocation, are not necessarily aligned
with the ones we model statically. We use the over-approximative nature of the scheduler to
mitigate this issue. Before constraining the space of schedule coefficients using Farkas’ lemma,
both our algorithms eliminate existentially-quantified variables necessary to express integer
division. Combined with transitively-covered dependence elimination, it results in a relations
between pairs of (adjacent in time) statement instances potentially accessing the same line. The
over-approximation is that the line may start at any element and is arbitrarily large. While this
can be encoded directly, our approach has two benefits. First, if C is chosen to be large enough,
the division-based approach will cover strided accesses. For example, adding vectors of complex
numbers represented in memory as a single array with imaginary and real part of a complex
number placed immediately after each other.Second, it limits the distance at which fusion may
be considered beneficial to exploit spatial locality between accesses to disjoint sets of array
elements.
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5.2. Spatial Proximity Relations

Out-of-bounds accesses are avoided by intersecting the ranges of the line-based access relations
with sets of all elements of the same array ImA ′

Si→A j ← ImA ′
Si→A j ∩ Im

⋃
k ASk→A j .

Accesses to scalars, treated as zero-dimensional arrays, are excluded from line-based access
relation transformation since we cannot know in advance their position in memory, or even
whether they will remain in memory or will be promoted.

5.2 Spatial Proximity Relations

Computing Spatial Proximity Relations Given unions of line-based read and write access
relations, we compute the spatial proximity relations using the exact dataflow-based procedure
that eliminates transitively-covered dependences [Fea91]. That is, only statement instances
adjacent in time in the original program are considered to depend on each other. Note that we
also consider spatial Read-After-Read (RAR) “dependence” relations as they are an important
source of spatial reuse. Thanks to the separation of validity, proximity and coincidence relations
in the scheduling algorithm, this does not unnecessarily limit parallelism extraction (which is
controlled by the coincidence relations and does not include RAR relations).

Access Pattern Separation Consider the code fragment in Figure 5.1. Statement S1 features
a spatial RAR relation on B characterized by PS1→S1,B = {(i , j ) → (i ′, j ′) | (i ′ = i +1∧b j ′/Cc =
b j /Cc)∨(i ′ = i ∧b j ′/Cc = b j /Cc)}. In this case, the first disjunct connects two references to B that
access different parts of the array. Therefore, spatial locality effects are unlikely to appear.

Statement S2 features a spatial proximity relation on D: PS2→S2,D = {(i , j ,k) → (i ′, j ′,k ′) | (i ′ =
i ∧bk ′/Cc = b j /Cc)∨ (i ′ = i ∧b j ′/Cc = bk/Cc)}. Yet the spatial reuse only holds when |k − j | ≤C ,
a significantly smaller number of instances than the iteration domain. The schedule would need
to handle this case separately, resulting in an inefficient branching control flow.

for (i = 1; i < 42; ++i)
for (j = 0; j < 42; ++j) {

S1: A[i][j] += B[i][j] + B[i-1][j];
for (k = 0; k < 42; ++k)

S2: C[i][j] += D[i][k] * D[i][j];
}

Figure 5.1 – Non-identical (S1) and non-uniform (S2) accesses to an array.

Both of these cases express group-spatial locality that is difficult to exploit in an affine schedule.
Generalizing, the spatial locality between accesses with different access pattern is hard to exploit
in an affine schedule. Two access relations are considered to have different patterns if there is at
least one access function, excluding the last one, that differs between them. The last function
is also considered but without the constant factor, that is D[i][j] has the same pattern as
D[i][j+2], but not as D[i][j+N]. Note that we only transform the access relations for the
sake of dependence analysis, the actual array subscripts remain the same. The analysis itself is
then performed for each group of relations with identical patterns.
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Access Completion Consider now the statement R in Figure 2.1. There exists, among others, a
spatial RAR relation between different instances of R induced by reuse on B:

PR→R,B = {(i , j ,k) → (i ′, j ′,k ′) |
((i ′ = i ∧ j ′ = j +1∧b j ′/Cc = b j /Cc∧k ′ = k)∨
(∃` ∈Z : i ′ = i +1∧ j ′ =C`∧ j =C`+C −1∧k ′ = k))}.

While both disjuncts do express spatial reuse, the second one connects statement instances from
different iterations of the outer loop, t. Similarly to the previous cases, spatial locality exists for
a small number of statement instances, given that loop trip count is larger than C . In practice, an
affine scheduler may generate a schedule with inner loop skewed by (C −1) times the outer loop,
resulting in inefficient control flow.

Pattern separation is useless in this case since the relation characterizes self-spatial locality, and
B[k][j] is the only reference with the same pattern. However, we can prepend an access
function i to simulate that different iterations of the loop i access disjoint parts of B.

Note that the array reference B[k][j] only uses two iterators out of three available. Collecting
the coefficients of affine access functions as rows of matrix A, we observe that such problematic
accesses do not have full column rank. Therefore, we complete this matrix by prepending
linearly independent rows until it reaches full column rank. We proceed by computing the
Hermite Normal Form H = A ·Q where Q is n ×n unimodular matrix and H is an m ×n lower
triangular matrix, i.e. hi j = 0 for j > i . Any row-vector v with at least one non-zero element
vk 6= 0,k > m is linearly independent from all rows of H . We pick (n − m) standard unit
vectors êk = (0 . . .0,1,0, . . .0),m < k ≤ n to complete the triangular matrix to an n-dimensional
basis. Transforming the basis with unimodular Q preserves its completeness. In our example,
it transforms B[k][j] into B[i][k][j], so that different iterations of surrounding loops
access different parts of the array. This transformation is only performed for defining spatial
proximity relations without affecting the accesses themselves.

Combining access pattern separation and access completion, we are able to keep a reasonable
subset of self-spatial and group-spatial relations that can be profitably exploited in an affine
schedule. Additionally, this decreases the number of constraints the ILP solver needs to handle,
which for our test cases helps to reduce the compilation time.

5.3 Temporal Proximity Relations

Temporal proximity relations are computed similarly to dependences, with the addition of RAR
relations. Furthermore, we filter out non-uniform relations whose source and sink of belong to
the same statement as we cannot find a profitable affine schedule for these.
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5.4 Carrying as Few Spatial Proximity Relations as Possible

Our goal is to minimize the number of spatial proximity relations that are carried by the affine
schedule resulting from the ILP. The distances along these relations should be made zero. Contrary
to coincidence relations, some may be carried. Those are unlikely to yield profitable memory
effects in subsequent schedule dimensions and should removed from further consideration.
Contrary to proximity relations, small non-zero distances are seldom beneficial. Therefore,
minimizing the sum of distance bounds or making it zero as exposed earlier is unsuitable for
spatial proximity. We have to consider bounds for separate groups of spatial proximity relations,
each of which may be carried independently of the others. These groups will be described in
section 5.5 below. Attempting to force zero distances for the largest possible number of groups
with relaxation on failure is combinatorically complex. Instead, we minimize the distances and
only keep the relations for which the distance is zero. Intuitively, this removes the first group
that must be carried if the previous groups are not. This encoding does not guarantee a minimal
number of groups is carried. For example, (0,0,1,1) ≺ (0,1,0,0) so (0,0,1,1) will be preferred
by lexmin even though it carries more constraints. On the other hand, we can leverage the
lexicographical order to prioritize certain groups over others by putting them early in the lexmin

formulation.

Combining Temporal and Spatial Proximity Generally, we expect temporal locality to be
more beneficial to performance than spatial locality. Therefore, we want to prioritize the former.
This can be achieved by grouping temporal proximity relations in the ILP similarly to spatial
proximity ones and placing the temporal proximity distance bound immediately before the spatial
proximity distance bound. Thus lexmin will attempt to exploit temporal locality first. If it is
impossible, it will further attempt to exploit spatial locality. Proximity relations carried by the
current partial schedule are also removed iteratively. Note that they would have been removed
anyway after the tilable band can no longer be extended. The new ILP minimization objective is

lexmin
np∑

i=1
(uT+

1,i +uT−
1,i ), wT

1 ,
np∑

i=1
(uS+

1,i +uS−
1,i ). . . .

np∑
i=1

(uT+
ng ,i +uT−

ng ,i ), wT
ng

,
np∑

i=1
(uS+

ng ,i +uS−
ng ,i ), wS

ng
, . . .

(5.1)

where uT
j ,i are coefficients of the parameters and wT

j is the constant factor in the distance bound
for the j th group of proximity relations, 1 ≤ j ≤ ng , and uS

j ,i , wS
j are their counterparts for

temporal proximity relations. The remaining non-bound variables are similar to those of (2.3),
namely the sum of schedule coefficients and parameters and individual coefficient values.

5.5 Grouping and Prioritizing Spatial Proximity Constraints

Grouping spatial proximity relations reduces the number of spatially-related variables in the ILP
problem and thus the number of iterative removals. However, one must avoid grouping relations
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when, at some minimization step, one of them must be carried while the other should not.

Initial Groups Consider the statement R in Figure 2.1. There exists a spatial proximity relation
R → R carried by the loop j due to accesses to C and B, and another one carried by the loop k
and due to the access to A. If these relations are grouped, their distance bound will be the same
for choosing j or k as the new schedule function. This effectively prevents the scheduler from
taking any reasonable decision and makes it choose dimensions in order of appearance, (i , j ,k).
Yet the schedule (i ,k, j ) improves spatial locality because both C and B will benefit from the last
loop carrying the spatial proximity relation. This is also the case for multiple accesses to the
same array, e.g., C is both read and written. Therefore, we initially introduce a group for each
array reference.

After introducing per-reference bounds, we order groups in the lexmin formulation to prioritize
carrying groups that are potentially less profitable in case of conflict. We want to avoid carrying
groups that offer the most scheduling choices given the current partial schedule as well as those
accesses that appear multiple times. This is achieved by lexicographically sorting them following
the decreasing access rank and multiplicity, which are defined below. Descending order makes
the lexmin objective carry groups with the smallest rank and multiplicity first.

Access Rank This sorting criterion is used to prioritize array references that, given the current
partial schedule, have the most subscripts that the remaining schedule functions can affect.
Conversely, if all subscripts correspond to already scheduled dimensions, the priority is the lowest.
Each array reference is associated with an access relation A ⊆ (~i →~a). Its rank is calculated as the
number of not yet fixed dimensions. In particular, given the current partial schedule T ⊆ (~i →~o),
we compute the relation between schedule dimensions and access subscripts through composition
T −1 ◦A ⊆ (~o →~a). The number of equations in T −1 ◦A corresponds to the number of fixed
subscripts. Therefore the rank is computed as the difference between the number of subscripts
dim~a and the number of equations in T −1 ◦A .

Access Multiplicity In cases of identical ranks, our model prioritizes repeated accesses to the
same cell of the same array. Access multiplicity is defined as the number of access relations to
the same array that have the same affine hull after removing the constant term. The multiplicity is
computed across groups. For example, two references A[i][j] and A[i][j+42] both have
multiplicity = 2. Read and write accesses using the same occurrence of the array in the code,
caused by compound assignment operators, are considered as two distinct accesses.

Combining Groups The definition of access multiplicity naturally leads to the criterion for
group combination: groups that contribute to each others’ multiplicity are combined, and the
multiplicity of the new group is the sum of those of each group.
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5.6 ILP Problem to Carry Many Spatial Proximity Relations

Our goal is to find a schedule function that carries as many spatial proximity relations as possible
with small (reuse) distance as this corresponds to spatial reuse. However, skewing often leads to
loss of locality by introducing additional iterators in the array subscripts. The idea of Feautrier’s
scheduler is to carry as many dependences as possible in each schedule function, which is often
achieved by skewing. We modify Feautrier’s ILP to discourage skewing by swapping the first two
objectives: first, minimize the sum of schedule coefficients thus discouraging skewing without
avoiding it completely; second, minimize the number of non-carried dependence groups. Yet
the minimal sum of schedule coefficients is zero and appears in case of a trivial (zero) schedule
function. Therefore, we slightly modify the linear independence method of Section 2.2.3 to
remain in effect even if “dimension slack” is available. This favors non-trivial schedule functions
that may carry spatial proximity against a trivial one that never does. The minimization objective
is

lexmin
maxdimDS∑

i=1

ns∑
j=1

(c−j ,i + c+j ,i ),
ng∑

k=1
(1−ek ),

np∑
i=1

ns∑
j=1

d j ,i , . . . (5.2)

where ns is the number of statements, np is the number of parameters, ek are defined similarly to
Feautrier’s LP problem for each of ng groups of spatial proximity relations. Validity constraints
must be respected, distances along coincidence relations are to be made zero if requested.

5.7 Scheduling for CPU Targets

On CPUs, spatial locality is likely to be exploited if the innermost loop accesses subsequent
array elements. False sharing may be avoided if parallel loops do not access adjacent elements.
Therefore, a good CPU schedule requires outer dimensions to carry as few spatial proximity
relations as possible and the innermost dimension to carry as many as possible. Hence we
minimize (5.1) for all dimensions. On the last dimension we apply (5.2).

Single Degree of Parallelism For CPU targets, ppcg exploits only one coarse-grained degree
of parallelism with OpenMP pragmas. Therefore, we completely relax coincidence relations for
each statement that already has one coincident dimension in its schedule, giving the scheduler
more freedom to exploit spatial locality. Furthermore, the clustering mechanism now tolerates
loss of parallelism as long as one coincident dimension is left.

Wavefront Parallelism Generally, we attempt to extract coarse-grained parallelism, i.e., render
outer schedule dimensions coincident. When coincidence cannot be enforced in the outermost
dimension of a band, we continue building the band without enforcing coincidence to exploit
tilability. Instead, we leverage wavefront parallelism by skewing the outermost dimension by the
innermost after the band is completed. Thus the outermost dimension carries all dependences
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previously carried by the following one, which becomes parallel.

Unprofitable Inner Parallelism Marking inner loops as OpenMP parallel often results in
inefficient execution due to barrier synchronization. Therefore, we relax coincidence relations
when two or less dimensions remain, even if no coincident dimension was found. As a result,
the scheduler will avoid exposing such inner parallelism and still benefit from improved spatial
locality.

Carrying Dependences to Avoid Fusion The band splitting in the isl makes each dimension
computed by Feautrier’s algorithm belong to a separate band. Therefore, dependences and
(spatial) proximity relations carried by this dimension are removed from further consideration.
Without these dependences and proximity relations, some fusion is deemed unprofitable by the
clustering heuristic. We leverage this side effect to control the increase of register pressure caused
by excessive fusion. We define the following heuristic h =∑

i ,k : affASi →k unique dim(DomASi→k )

where ASi→k have unique affine hulls across the SCC: ∀i , j ,∀k 6= l ,affASi→k 6= affAS j→l . The
uniqueness condition is required to consider repeated accesses to the same array, usually promoted
to a register, with the same subscripts once. This heuristic is based on the assumption that each
supplementary array access uses a register. It further penalizes deeply nested accesses by taking
into account the input dimension of the access relation.

As we still prefer to exploit outer parallelism whenever possible, this heuristic is only applied
when the scheduler fails to find an outer parallel dimension in a band. When the h value is large
h > hlim, we use Feautrier’s algorithm to compute the next schedule function. This may prevent
some further fusion and thus decreases parallelism in the current dimension while exposing
parallelism in the subsequent dimensions. Otherwise, we continue computing the band and rely
on wavefront parallelism as explained above. The values of hlim can be tuned to a particular
system.

Parallelism/Locality Trade-off If a schedule dimension is coincident and carries spatial prox-
imity relations, its optimal location within a band is not obvious: if placed outermost, it will
provide coarser-grained parallelism, if placed innermost, it may exploit spatial locality. The
current implementation prefers parallelism as it usually yields better performance gains. However,
in case of tiling, both characteristics can be exploited: in the tile loop band, this dimension should
be put outermost to exploit parallelism; in the point loop band, this dimension should be put
innermost to exploit spatial locality. To leverage the additional scheduling freedom offered by
stripmining/tiling, note that ppcg optionally performs post-tile loop reordering using the Pluto
heuristic (2.2).
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5.8 Scheduling for GPU Targets

High-end GPUs typically exploit three degrees of parallelism or more. Memory coalescing can
be exploited along the parallel dimension mapped to the x threads. One should strive to coalesce
as many accesses as possible; ppcg will try to copy arrays with uncoalesced accesses into the
limited shared memory. Therefore, we first minimize (5.2) while enforcing zero distance along
coincidence constraints. If no coincidence solution can be found, we apply Feautrier’s scheduler
for this dimension in an attempt to expose multiple levels of inner parallelism. If a coincident
solution does not carry any spatial proximity, we discard it and minimize (2.3) instead. Because
the band members must carry the same dependences and proximity relations, it does not make
sense to keep looking for another dimension that carries spatial proximity if the first could not
exploit spatial proximity: if spatial proximity could have been exploited, it would have already
been found. It also does not make sense to keep looking for such dimension in the following band
since only the outermost band with coincident dimensions is mapped to GPU blocks. Therefore,
we relax spatial proximity constraints. They are also relaxed once one dimension that carries
them is found as memory coalescing is applied along only one dimension. After relaxation, we
continue with the regular isl scheduler applying (2.3) or Feautrier’s ILP.

Mapping The outermost coincident dimension that carries spatial proximity relations in each
band is mapped to the x block by ppcg. All other coincident dimensions, including the outermost
if it does not carry spatial proximity, are mapped to blocks in inverse order, i.e., z, y, x.
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5.9 Experimental Evaluation

The evaluation takes two parts. We first compare speedups obtained by our approach with those
of other polyhedral schedulers; the following section highlights the differences in affine schedules
produced with and without considering memory effects.

5.9.1 Implementation Details

Our proposed algorithm is implemented as an extension to isl. Dependence analysis and filtering
is implemented as an extension to ppcg. Our modifications apply on top of the development
versions of both tools (precise commits will be released and indicated in the published version)
available from git://repo.or.cz/ppcg.git and git://repo.or.cz/isl.git.

Additional Modifications to the isl Scheduler Miscellaneous improvements were intro-
duced to isl alongside the design and implementation of the new scheduler. Solving an integer
LP inside Feautrier’s scheduler instead of a rational LP if the latter gives rational solutions; this
avoids large schedule coefficients. Using original loop iterators in the order of appearance in
case of cost function ties; similarly to Pluto. In Pluto-style ILP, minimize the sum of coefficients
for loop iterators~i rather than for already computed schedule dimensions φ j ; for example, after
computing φ1 = i + j and φ2 = j +k prefer φ3 = φ1 −φ2 = i −k over φ′

3 = φ1 +φ2 = i +2 j +k.
For reproducibility and finer characterization of the scheduler, we compare both the stable and
the development version of isl with our implementation in cases where they produce different
schedules.

Iterative Removal of Proximity Relations As described in Subsection 2.2.3, isl uses an
iterative approach to explore the schedule space with negative coefficients. To reduce the number
of cases to consider, it iterates over subspaces more aggressively by only looking for a solution that
is significantly better than the existing one, i.e., the one where the leading non-zero component of
the new solution is less than the same component of the original solution. For example, if it found
a solution (0,0, x,1,1,1), x > 0 in one subspace, it may ignore a lexicographically smaller solution
(0,0, x ′ = x,0,0,0) in another subspace as it constrains x ′ < x. This behavior may be detrimental
when attempting to carry a small number of spatial proximity relations. Therefore, we have to
relax the constraints that led to the first x 6= 0. Instead of solving multiple ILP problems from
scratch, it is possible to leverage the incremental solver available in isl.

GPU Mapping We extended the schedule tree to communicate information about the ILP
problem that produced each of the dimensions. If the first coincident schedule dimension was
produced by carrying many spatial proximity relations, we map it to the x block. For the
remaining dimensions, and if no spatial proximity was carried, we apply the regular z,y,x
mapping order. Arrays required by GPU kernels and mapped to shared memory are copied in
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row-major order without re-scheduling before the first and after the last kernel call. Further
exploration of mapping algorithms and heuristics is of high interest but out of the scope of this
paper.

5.9.2 Experimental Protocol

Systems We experimentally evaluated our unified model on different platforms by executing the
transformed programs on both CPUs and GPUs—with the same input source code, demonstrating
performance portability. Our testbed included the following systems:

• ivy/kepler: 4× Intel Xeon E5-2630v2 (Ivy Bridge, 6 cores, 15MB L3 cache), NVidia
Quadro K4000 (Kepler, 768 CUDA cores) running CentOS Linux 7.2.1511. We used
gcc 4.9 compiler with options -O3 -march=native for CPU, and nvcc 8.0.61 with
option -O3 for GPU.

• skylake, Intel Core i7-6600u running Ubuntu Linux 17.04. We used the GCC 6.3.0
compiler with -O3 -march=native options.

• westmere, 2× Intel Xeon X5660 (Westmere, 6 cores, 12MB L3 cache) running Red Hat
Enterprise Linux Server release 6.5. We used icc 15.0.2 with option -O3.

Benchmarks We evaluate our tools on PolyBench/C 4.2.1, a benchmark suite representing
computations in a wide range of application domains and commonly used to evaluate the quality
of polyhedral optimizers. We removed a typedef from nussinov benchmark to enable GPU
code generation by ppcg. Additionally, we introduced variants of symm, deriche, doitgen
and ludcmp benchmarks, in which we manually performed scalar or array expansion to expose
more parallelism. On CPUs, all benchmarks are executed with LARGE data sizes to represent
more realistic workloads. On GPUs, we observed that, even with EXTRALARGE size, some
benchmarks use too little data and run too fast to obtain stable performance measurements. On
the other hand, different benchmarks (those that require skewing to express inner parallelism),
did not terminate in 20 minutes with this size. Therefore, we used modified program sizes for
GPUs reported in Figure 5.4, which are powers of two so as to simplify the generated code after
tiling.

Tools Since the Pluto+ implementation cannot handle several of the Polybench 4.2.1 bench-
marks, we compare against Pluto. Note that [BAC16] reports that Pluto+ and Pluto generate
identical schedules for PolyBench, which is consistent with our observations.

The polyhedral compilers we compared are the following:

• ppcg public: latest ppcg release (ppcg-0.07 with isl-0.18)
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• ppcg trunk: see implementation details;

• ppcg spatial: chapter 5, with and without post-tile reordering;1

• Pluto: Pluto 0.11.4 with -parallel -tile options when appropriate;

• PolyAST: with reductions and DOACROSS parallelism support disabled.2

All versions of ppcg and Pluto were instructed to perform loop tiling with size 32 on CPUs and
16 on GPUs. Smaller sizes on GPUs help fit as many arrays as possible into the shared memory.
Pluto is unable to generate CUDA code and was not used in GPU evaluations.

Measurements We collected execution times using the default PolyBench timing facility on
CPU, and using the NVidia CUDA profiler on GPUs (we summed all kernel execution times
reported by the profiler in cases where multiple kernels were generated).

For each condition, we performed all measurements 5 times and picked the median value.

5.9.3 Sequential Code Performance

Polyhedral optimizers can be used to improve the performance of sequential programs (with
exploitable vector parallelism) on modern CPUs with deep memory hierarchies and advanced
vectorization features. We measured run times of the benchmarks on the skylake system, which
features the AVX2 instruction set. For Pluto, we used -tile -intratileopt flags. For
baseline ppcg, we used -target=c -tile flags. For our variant of ppcg, we addition-
ally used the -isl-schedule-spatial-fusion flag (consider spatial fusion relations
in fusion heuristic). The speedup of the transformed code over the original code is shown in
Figure 5.2(top).

Spatial locality-aware scheduling resulted in significant improvements for the two PPCG spatial
versions relative to Pluto for 2mm, 3mm, gemver, mvt and symm and benchmarks. For
2mm, 3mm, the speedup grows from 2.9× to 4.6×. Pluto was unable to transform symm while
our flow achieves 2.4× speedup, part of which is attributed to changes in isl alone. For several
benchmarks, including atax, deriche, jacobi-1d, ludcmp, all variants of ppcg
generate faster codes. This is due to (1) a different loop fusion structure thanks to the clustering
technique and (2) live-range reordering support. Small differences in performance between
Pluto and ppcg-spatial, like those observed in covariance, correlation or trmm are
due to the differences in code generation algorithms between the tools: ppcg tends to generate
simpler and thus faster control flow than CLooG, used in Pluto. For gemm, Pluto code is slightly
more efficient because ppcg decided to fuse the initialization and the computation statements,

1Available at [redacted for double-blind review]
2Reduction is ignored at the parallelization phase and DOACROSS is converted into wavefront DOALL.
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improving (temporal and spatial) locality but resulting in more complex control flow. Finally,
Pluto versions outperform those of ppcg for adi, gesummv and gramschmidt. This is due
to the difference in tiling strategies: contrary to ppcg, Pluto may tile imperfectly nested loops.
This strategy is in practice equivalent to performing loop fusion after tiling, which would hinder
ppcg’s clustering approach as the entire schedule is considered to be fixed when loop tiling is
performed. At the same time, we observed large variance of speedups between different runs of
gesummv and gramschmidt, some runs of ppcg-spatial approaching Pluto results. Further
experimentation on different systems and with different tile strategies and sizes is required to
draw conclusions for these cases. Post-tile reordering in ppcg had only a marginal effect for the
sequential code.

5.9.4 Parallel CPU Code Performance

While Section 5.3 showed robust performance for sequential execution, we would expect the
impact of our unified approach to be even stronger when optimizing for both parallelization and
memory locality. We measured run times of the benchmarks on the ivy system with 24 threads.
For Pluto, we used -parallel -tile -intratileopt flags. For baseline ppcg, we
used -target=c -openmp -tile flags. For our variant of ppcg, we used a set of flags
that enables all heuristics described in this paper. The speedup of the transformed and parallelized
code over the original sequential version is shown in Figure 5.2(middle).

Similarly to sequential versions, our approach results in significant speedup over pluto for 2mm
and 3mm, growing from 6.8× to 14.4× and from 6.5× to 16.7×, respectively. Even without
memory effects modeling, ppcg outperforms Pluto because of differences in the selection of
loop fusion transformations. ppcg also outperforms Pluto in multiple other cases, including
larger benchmarks correlation and covariance. Memory effects modeling corrects
numerous cases in which standard ppcg was counterproductive. Furthermore, it is able to
achieve up to 1.4× for stencil-like codes heat-3d and jacobi-1d where Pluto yields a 2×
slowdown. This is due to a simpler schedule structure exposing inner parallelism via Feautrier’s
scheduler and our heuristic for register pressure reduction. Minor differences in performance, for
example in the seidel-2d case, are again caused by differences in code generation whereas
the schedules produced by Pluto and ppcg-spatial are identical. Live-range reordering enables
ppcg to parallelize ludcmp and symm. In these cases, memory effects play only a small role
in performance improvement. For example, the speedup for symm grows from 2.3 with ppcg-
trunk to 2.7 with ppcg-spatial-posttile. The difference is more visible after scalar expansion
(symm_ex): Pluto is able to parallelize this version and achieves 20× speedup while ppcg-
spatial-posttile reaches 25.8× speedup. For the reasons discussed earlier, Pluto still significantly
outperforms ppcg on gramschmidt (8.8× and 2.9× speedup, respectively) benchmark as well
as on nussinov. As for sequential versions, this difference is caused by ppcg’s inability to
perform loop fusion after tiling.

Note that syntactic post-tile reordering transformation is not always beneficial when our algorithm
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Figure 5.2 – Speedup of the optimized tiled code over the original code with different scheduling
algorithms; top: sequential code on skylake, middle: parallel code on ivy; bottom: parallel code
on westmere.

is used to exploit spatial locality. For example, it increases speedup for covariance from
30.5× to 32.4× and decreases it from 33× to 28.7× for correlation. Post-tile reordering is
mainly beneficial when different schedules are required for tile loops and point loops.

5.9.5 Comparison with Hybrid Affine/Syntactic Approach

We compared the results our approach can achieve with those of PolyAST (disabling reductions
and doacross supports), a state-of-the-art hybrid scheduling tool that uses an affine scheduler to
improve locality and then relies on syntactic AST-based transformations to exploit parallelism. We
also compared with Pluto-optimized codes. The speedups from parallel execution on westmere
are shown in Figure 5.2(bottom). As PolyAST was designed to yield efficient code for icc,
we used this compiler across all tools. Pluto was run with -noprevector flag to disable
icc-specific pragmas it is able to generate contrary, since that feature is not supported by the
other tools.

Overall, the observed performances for PolyAST and ppcg are very close. PolyAST could not
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fully transform adi and nussinov into the polyhedral model, hence obtained no speedup. Both
PolyAST and ppcg-spatial computed identical schedules for 2mm and 3mm, resulting in 4.5× and
13.2× speedups for the respective benchmarks. Similar schedules and hence close performance
characteristics are observed for multiple other benchmarks, including symm, trisolv and lu.
Such observations confirm our intuition that a unified polyhedral approach can obtain comparable
schedules to a hybrid approach. Minor performance differences should be attributed to differences
in code generation tools, which may enable and hinder different icc optimizations. For example,
schedules for floyd-warshall are identical for PolyAST, Pluto and ppcg, yet they achieve
9.7×, 9.4× and 8.9× speedups, respectively. We did not tune the register pressure reduction
heuristic to westmere, which resulted in performance difference on stencil-like benchmarks: on
heat-3d, ppcg obtains 2.9× speedup while PolyAST reaches only 1.2×; on jacobi-2d, the
situation is the inverse, ppcg obtains only 3.7× speedup while PolyAST reaches 6.5×. In both
cases, our approach chose to create two inner parallel loops with simple schedules rather than
a single parallel loop with more complex schedules due to skewing and shifting. It does so by
applying Feautrier’s scheduler for the outer dimension and splitting bands. Yet for the smaller
jacobi-2d this is not profitable. Setting hlim = 32 for this system would produce the same
schedule as Pluto. The live-range reordering support in PPCG enables additional loop tiling for
benchmarks including doitgen and ludcmp, and results in better performance than PolyAST
and Pluto. Finally, for atax and trmm benchmarks, both Pluto and ppcg-spatial outperform
PolyAST. Based on the decoupled optimization policy, PolyAST’s affine scheduling phase
focuses on improving data locality and consequently locates non-doall loops at the outermost for
atax and trmm. In contrast, Pluto and ppcg-spatial enable outermost doall parallelism while
enhancing per-tile data locality via the post-tile reordering.

5.9.6 Parallel GPU Code Performance

GPU performance was evaluated on the kepler system. We only compared different variants of
ppcg as Pluto cannot produce GPU code and PolyAST-GPU relies on a drastically different
code generation tool.

We selected six PolyBench benchmarks where the spatial effects scheduler had an impact, as
presented in Figure 5.3. For all cases except lu, ppcg discovers no outer parallelism and resorts
to repeated kernel calls from the generated host code. Figure 5.4 summarizes the number of
different kernels and the cumulative number of kernel invocations. In such cases, an important
benefit of our approach lies reducing the number of kernel calls, each of which introduces
overhead, as well as optimization of the kernel itself. The spatial version of ppcg reduced the
number of kernels for adi and lu due to different scheduling decisions and spatial effects-aware
fusion. As a result, speedup for lu grows from 4.6× to 19.1×. For adi, it slightly decreases from
0.74× to 0.7×, but this kernel seems unsuitable for GPU processing anyway. For gramschmidt
and trisolv, our algorithm manages to reduce the number of kernel invocations. Note that the
kernel execution time for trisolv is marginal in the total execution time, therefore mapping
this kernel alone to GPU is counterproductive. However, the impact of our optimization could
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be increased if trisolv was part of a larger application that was mapped on to the GPU. For
symm, our algorithm took a better decision for memory coalescing, resulting in small additional
speedup. Finally, for seidel-2d, both spatial effects and trunk ppcg show slowdowns relative
to the public version. A detailed analysis shows that this was because the code generation in
public ppcg happened to interchange the two innermost loop, whereas the trunk and spatial
versions always strive to preserve the original loop order for the innermost loops. Thus, the
superior performance of public ppcg was accidental, and not a result of a scheduling decision.
Correction of this regression requires a scheduling algorithm that can jointly optimize for the
different memory spaces in the CPU and GPU, which is an excellent candidate for future research.

Figure 5.3 – Left and center graphs show total kernel execution time and program execution time
(lower is better). Right graph shows speedup over CPU sequential version (higher is better).

adi gramschmidt lu seidel-2d symm trisolv
parameter value 512 2048 4096 1024×4096 2048 4096

# kernels (public) 14 7 3 1 2 3
# invocations (public) 7168 28643 20471 16372 2 12286

# kernels (spatial) 6 7 2 1 2 3
# invocations (spatial) 3072 12287 8190 16372 2 8192

Figure 5.4 – Parameter values, number of kernels generated by public and spatial versions of
ppcg and cumulative number of invocations of those kernels for each benchmark (lower is
better).

Beyond these 6 cases, spatial locality modeling did not affect the generated schedule since
ppcg prioritizes parallelism over any sort of locality effects for GPU targets. On the other
hand, a mechanism to avoid large schedule coefficients in Feautrier’s scheduler was introduced
in isl-trunk and significantly improved performance on deriche, doitgen, cholesky
and ludcmp (most spectacular on deriche’s 3256× speedup). However, compared to the
sequential CPU code, it results in a modest 1.25× improvement.

Overall, our approach can indeed exploit additional memory coalescing. As Polybench includes
only a small number of benchmarks with sufficient amount of parallelism for GPU mapping,
spatial effects-related changes the schedule only in a small number of cases. In other cases, it
prefers parallelism as the main source of performance. Evaluating on larger benchmarks with
longer execution time would be necessary to fully estimate the benefits of our model on GPUs.
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5.10 Differences in Schedules: Case Study Discussions

5.10.1 Two Matrix Multiplications

2mm is a linear algebra kernel that computes a I ×L matrix D =βC ·α(A ·B) where A is a I ×K ,
B is a K × J , and C is a J ×L matrix; α,β are scalars as shown in Fig 5.5(left).

The schedule computed by our algorithm for the OpenMP target is {S1(i , j ) → (0, i ,0, j )}∪
{S2(i , j ,k) → (0, i ,k, j )} ∪ {S3(i , j ) → (1, i ,0, j )} ∪ {S4(i , j ,k) → (1, i ,k, j )} whereas Pluto pro-
poses {S1(i , j ) → (0, i , j ,1,0)}∪{S2(i , j ,k) → (1, i , j ,0,k)}∪{S3(i , j ) → (0, i , j ,0,0)}∪{S4(i , j ,k) →
(1, i ,k,1, j )}, ppcg-trunk proposes {S1(i , j ) → (0, i , j ,0)}∪ {S2(i , j ,k) → (0, i , j ,k)}∪ {S3(i , j ) →
(1, i , j ,0)}∪ {S4(i , j ,k) → (1, i , j ,k) and PolyAST proposes {S1(i , j ) → (i ,0, j )}∪ {S2(i , j ,k) →
(i ,1,k, j )}∪ {S3(i , j ) → (i ,2, j )}∪ {S4(i , j ,k) → (i ,3,k, j ) .

Pluto exploits locality between tmp[i][j] in S2 and tmp[i][k] in S4 by fusing the sur-
rounding loops. By doing so, it loses the possibility to improve spatial locality on B[k][j] in
S2. It also introduces extra control flow due to different schedules in the three last dimensions.
Finally, it loses proximity between S1 and S2 and between S3 and S4. ppcg essentially pre-
serves the original code structure because two outer dimensions are parallel, which is unnecessary
for CPUs. PolyAST first computes the most profitable loop order for each statement by the DL
memory cost model [Sar97] and finds schedules based on the profitable orders, e.g., i-k-j is
chosen for S2 and S4 as with our approach; and all i loops are fused to improve locality.

Our approach maintains the original fusion structure, trading off locality between “initialization”
and “computation” statements for locality between S2 and S4. The reasoning inside each of the
two new loop nests is identical, so we only consider the first one. Our algorithm replaces temporal
locality on tmp[i][j] with spatial locality, spatial locality on A[i][k] with temporal locality
and additionally leverages spatial locality on B[k][j]. The first dimension is chosen as i
because access ranking prioritizes tmp[i][j] due to write access. In this reference, i carries
neither proximity nor spatial proximity. For the second dimension, access ranking prioritizes
B[k][j] because it uses two yet unscheduled iterators. Thus the scheduler chooses k as it
does not carry spatial proximity, i being linearly dependent on the previous dimension. The
remaining dimension is chosen as j because it carries spatial proximity on both tmp[i][j]
and B[k][j].

On GPUs, both ppcg-trunk and ppcg-spatial produced the same schedule with respect to
mapping: i and j loops are outer parallel and are mapped to y and x blocks, respectively,
original fusion structure is maintained. However, without spatial effects modeling, ppcg cost
function cannot distinguish between i and j loops. It maintains their original order, which is
profitable in this particular case. Had these loops been nested in the opposite order, the public
ppcg would have mapped j to y and i to x, failing to exploit memory coalescing. Such schedule
results in 1.5× slowdown in kernel execution time and 1.3× slowdown overall, compared to the
profitable schedule for our test sizes. Our spatial effects-aware approach, on the other hand,
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would have still computed the same profitable schedule. More detailed evaluation is required
to fully demonstrate the stability of our algorithm to isomorphic loop permutations in the input.
However, we expect this behavior to appear across multiple benchmarks.

5.10.2 LU Decomposition

LU decomposition is a linear algebra kernel that, given an N ×N matrix A computes lower and
upper triangular matrices L and U such that L ·U = A. It may be implemented in-place as shown
in Figure 5.5(right), which is challenging for analysis due to a large number of non-uniform
dependences.

void 2mm(double alpha, double beta,
double A[NI][NK], double B[NK][NJ],
double C[NJ][NL], double D[NI][NL]) {

double tmp[NI][NJ];
for (i = 0; i < NI; i++)

for (j = 0; j < NJ; j++) {
S1: tmp[i][j] = 0.0;

for (k = 0; k < NK; ++k)
S2: tmp[i][j] += alpha * A[i][k] * B[k][j];

}
for (i = 0; i < NI; i++)

for (j = 0; j < NL; j++) {
S3: D[i][j] *= beta;

for (k = 0; k < NJ; ++k)
S4: D[i][j] += tmp[i][k] * C[k][j];

}
}

void lu(double A[N][N]) {
for (i = 0; i < N; i++) {

for (j = 0; j < i; j++) {
for (k = 0; k < j; k++)

S1: A[i][j] -= A[i][k] * A[k][j];
S2: A[i][j] /= A[j][j];

}
for (j = i; j < N; j++)
for (k = 0; k < i; k++)

S3: A[i][j] -= A[i][k] * A[k][j];
}

}

Figure 5.5 – Code of the 2mm (left) and lu (right) benchmarks with labeled statements.

Both Pluto and our algorithm resort to wavefront parallelism after tiling. For the OpenMP version,
Pluto proposes the schedule {S1(i , j ,k) → (i , j ,k)}∪ {S2(i , j ) → (i , j , j )}∪ {S3(i , j ,k) → (i , j ,k)}

that essentially embeds S2 in the innermost loop so as to respect dependences. After tiling,
it interchanges two innermost point loops to leverage spatial locality but keeps tile loop order
unchanged. Our algorithm computes directly the schedule {S1(i , j ,k) → (i ,k, j )}∪ {S2(i , j ) →
(i , j , j )}∪ {S3(i , j ,k) → (i ,k, j )} including this interchange. Using this schedule for both tile
and point loops improves sequential performance thanks to avoiding false sharing effect. The
public ppcg does not have support for wavefront parallelism and does not parallelize this kernel.
PolyAST proposes the schedule identical to ours because the DL model selected these loop orders
as the most profitable in terms of memory cost reduction. The data locality modeling in our affine
scheduler enables the same loop orders as the mixed affine/syntactic approach, while our unified
scheduling approach be in no danger of missing doall parallelism discussed in Section 5.9.5.

For GPU targets, ppcg-trunk proposes the schedule {S1(i , j ,k) → (k,0, i , j )}∪{S2(i , j ) → ( j ,1, i , j )}∪
{S3(i , j ,k) → (k,2, i , j )} where j gets mapped to the x block and accesses A[*][j] feature
memory coalescing. Note that ppcg-trunk respects the original order of loops and does
not explicitly optimize for coalescing. Our algorithm produces the schedule {S1(i , j ,k) →
(k,1, j , i )}∪{S2(i , j ) → ( j ,0, j , i )}∪{S3(i , j ,k) → (k,1, j , i )} where j is also mapped to the x block
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because it is known to feature coalescable accesses. Furthermore, our algorithm fuses two
loops resulting in fewer kernels reducing kernel launch overhead and thus decreasing the total
computation time.

5.10.3 Triangular Matrix Multiplication

Triangular matrix multiplication is a linear algebra kernel that takes N ×N lower triangular matrix
A and square matrix B ; and computes a N ×N matrix Bout = A ·B . Note that the output Bout is
to be stored in place of the input array B as shown in Fig. 5.5(right).

Both PPCG and Pluto select outermost doall parallelism for S1 and S2, and proposes the sched-
ule {S1(i , j ,k) → (0, j , i ,k)}∪ {S2(i , j ) → (1, i , j )} while schedule by PolyAST is {S1(i , j ,k) →
(0,k, i , j )}∪ {S2(i , j ) → (1, i , j )} where the outermost k loop of S1 carries loop dependence and
thereby requires doacross parallelization.

Based on the decoupled optimization policy, PolyAST’s affine scheduling phase focuses on
improving data locality and selects k-i-j loop order for S1; and the parallelization phase
in the latter syntactic stage detects the doacross parallelism located outermost. On the other
hand, our unified modeling of locality and parallelism enables outermost doall and post-tile
permutation locates j loop at the innermost position for better locality within a tile. Our approach
outperformed PolyAST by the factor of 1.4× improvement as reported in Section 5.9.
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6 Auto scheduling Deep learning
pipelines

In recent years there has been an exponential growth in deep learning techniques. The key factor
for the success of these deep learning has been large amount of data and the availability of
enormous compute power. Due to which we can build an highly accurate model by training
them on millions of images. The basic units of deep learning pipelines is combination of affine
operator typically convolution and pointwise non-linear operator typically Relu. The typical deep
learning pipeline consists of multiple layers of such combination stacked together. During the
training phase, the weights of convolution and fully connected layers are learnt from the training
data. Initially these weights are randomly chosen. Each images in the training set propagated
through the network to produce the output, this is output is compared against the actual output,
the difference between the two is back propagated. During back propagation, the weights in the
each layers are adjusted according to the gradient dissent. This training process is repeated for
millions of images resulting in highly accurate model. Once the model is built, it can evaluated for
any new input by propagating through the model, this is refereed to as inference. Deep learning
pipeline has all the computations that are affine and are amendable for polyhedral compilation.
In this chapter We study advantages and challenges of using polyhedral compilation techniques
for deep learning tensor computations. Figure 6.1 shows the overview of the system. We extract
polyhedral intermediate representation from TVM [CMJ+18], a end-to-end compiler stack that
has support for many popular deep learning frameworks such as Tensorflow, MXNet, Keras etc..
TVM follows the same principle as Halide [RKBA+13] of separating computation and scheduling
specification. We use polyhedral scheduling with autotuning to automatically compute the TVM
schedule.

6.1 TVM

TVM [CMJ+18] is an end-to-end compiler stack that is designed to optimize and fine-tune
deep learning workloads for a wide variety of hardware platforms. It is mainly composed of
two intermediate layers: a computational DAG (directed acyclic graph) and low-level tensor
description language. The graph IR is similar to TensorFlow XLA [Goo] where nodes represent
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Deep learning Computation graph

TVM IR

TVM Codegen

CUDA

Polyhedral IR

ISL Scheduler

Autotuning

TVM Schedule

Performance Model

Figure 6.1 – TVM auto scheduling overview
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basic tensor operations like convolution and edges represent the data flow dependency. The
tensor description language is inspired by Halide [RKBA+13] and follows the same principle
of decoupling computation and scheduling descriptions. The Figure 6.1 shows the computation
part of TVM IR for the matrix multiply kernel. The input tensors with its dimensions are
explicitly specified and the tensor operations are specified as a computation on input tensor index
expressions in compute statement. The reduction variables must be explicitly declared using
reduce-axis and the rest of index variables represent parallel loop dimensions.

1 import tvm

2 n, m, l = tvm.var(’n’), tvm.var(’m’), tvm.var(’l’)

3 A = tvm.placeholder((n, l), name=’A’)

4 B = tvm.placeholder((m, l), name=’B’)

5 k = tvm.reduce_axis((0, l), name=’k’)

6 C = tvm.compute(

7 (n, m),

8 lambda ii, jj: tvm.sum(A[ii, k] * B[jj, k], axis=k),

9 name=’CC’)

6.1.1 TVM schedule primitives

TVM scheduling primitives provide fine grain control for the programmer to express various
program transformations needed to obtain high-performance implementations of the tensor
computations. The schedule primitives such as split, reorder, tile, fuse, unroll

are used to perform high-level loop transformations. The bind primitive is used to map a loop
to a GPU block or thread. The cache_read and cache_write primitives are used for shared
memory and private memory promotion. The loop can be vectorized using vectorize primitive.
The double_buffer primitive can be used to hide the latency of the global memory reads
by overlapping computation and communication. A complete description of all the scheduling
primitives can be found in [CMJ+18, tvm].

Figure 6.1.1 shows the schedule primitives used for optimizing GEMM kernel to GPUs. The
tvm.create_schedule function is used to create schedule object for a given tensor operation
( C.op in the Figure 6.1.1). We can access the individual loops of the tensor operation using
op.axis. The reduction loops are explicitly specified in TVM IR that are separated from the
normal loops and can be accesses using op.reduce_axis. The schedule primitives operate on
these loops and can produce new loops. The split primitive is used to split a loop into two parts
either by specifying block_factor or num_parts. The newly created inner and outer loop
are returned by the split primitive. The reorder primitive is used to permute the loops in
the order specified by the function arguments. We can perform tiling on a band of loops first by
splitting individual loops and then reordering tile and point loops. There is also tile primitive
which does the exact same operation. Multiple consecutive loops can be fused into a single loop
using fuse primitive.
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The individual loops can be mapped into different GPU block/thread axis using the bind primitive.
We first need to create a GPU mapping axis using tvm.thread_axis primitive by passing axis
name ("blockIdx.x" or "threadIdx.x") and an optional grid/block size. If a loops is mapped to a
thread_axis of size B then the i iteration of loop is mapped to thread i /B . If block/grid size is
not specified then grid/block size will be equal to the trip count of the loop being mapped. While
this group mapping is enhances the cache locality, in some cases this may lead to uncoalesced
accesses and shared memory bank conflicts. In order to achieve consecutivity TVM introduces
another virtual thread axis called vthread. With the vthread mapping an iteration i of a loop
is mapped to thread i %B . In order to exploit both cache locality and consecutivity, an axis is split
twice and mapped to blocks, vthread and threads starting from outer loops.

GPUs have limited global memory bandwidth hence most of the unoptimized tensor applications
are bandwidth bound. A a very common GPU optimization to overcome this is to cache the
global memory reads in the shared memory. If there is a data reuse access multiple threads of the
block then caching global memory reads/writes in shared memory will decrease number of global
memory requests. Shared memory promotion will also help in case of uncoalesced accesses. The
same optimization can be applied to decrease the traffic between shared memory and registers
by caching shared memory reads/writes in registers. The cache_read and cache_write

primitives can be used to cache a read/write of a tensor. We can use this primitive to do shared
or private memory promotion of a tensors. The output of cache_read or cache_write is
a tensor computation op_node which can be scheduled like normal tensor operations. It has
same number of axis as the dimensions of tensor being cached. These axis are used to map the
reads/write loops to GPU thread hierarchy using split and bind primitives. We can change the
root of caching loops using compute_at primitive which moves the root of tensor computation
to a specified position. For shared memory promotion the copying loops can additionally
vectorized (four consecutive memory loads with single instruction) using vectorize primitive.
There is also primitive to enable overlapping global memory loads with the computation using
double_buffer. In the Figure 6.1.1 for the GEMM kernel there is data reuse for reads of both
A and B tensors hence they are promoted to shared memory, and the coping loops are vectorized.
Furthermore these reads are cached in private memory to exploit register reuse. The write to
tensor C is also cached at the register level to avoid multiple writes of intermediate values to the
global memory.

The schedule primitives of TVM gives fine grain control to the user at individual loop level to
perform various GPU optimizations need to achieve good performance. Once the schedule is
specified we can generate code for many different targets. TVM supports multiple backends
including cuda, opencl, x86, metal, ROCm etc..

1 s = tvm.create_schedule(C.op)

2 i,j = C.op.axis

3 k = C.op.reduce_axis

4

5 scale = 8

6 num_thread = 8
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7 block_factor = scale * num_thread

8

9 by, yi = s[C].split(i, factor=block_factor)

10 bx, xi = s[C].split(j, factor=block_factor)

11 s[C].reorder(by, bx, yi, xi)

12

13 block_x = tvm.thread_axis("blockIdx.x")

14 thread_x = tvm.thread_axis((0, num_thread), "threadIdx.x")

15 block_y = tvm.thread_axis("blockIdx.y")

16 thread_y = tvm.thread_axis((0, num_thread), "threadIdx.y")

17 thread_xz = tvm.thread_axis((0, 2), "vthread", name="vx")

18 thread_yz = tvm.thread_axis((0, 2), "vthread", name="vy")

19

20 s[C].bind(by, block_y)

21 s[C].bind(bx, block_x)

22

23 AA = s.cache_read(A, "shared", [C])

24 BB = s.cache_read(B, "shared", [C])

25 AL = s.cache_read(AA, "local", [C])

26 BL = s.cache_read(BB, "local", [C])

27 CC = s.cache_write(C, "local")

28

29

30 tyz, yi = s[C].split(yi, nparts=2)

31 ty, yi = s[C].split(yi, nparts=num_thread)

32 txz, xi = s[C].split(xi, nparts=2)

33 tx, xi = s[C].split(xi, nparts=num_thread)

34 s[C].bind(tyz, thread_yz)

35 s[C].bind(txz, thread_xz)

36 s[C].bind(ty, thread_y)

37 s[C].bind(tx, thread_x)

38 s[C].reorder(tyz, txz, ty, tx, yi, xi)

39 s[CC].compute_at(s[C], tx)

40

41 yo, xo = CC.op.axis

42 ko, ki = s[CC].split(k, factor=8)

43 kt, ki = s[CC].split(ki, factor=1)

44 s[CC].reorder(ko, kt, ki, yo, xo)

45 s[AA].compute_at(s[CC], ko)

46 s[BB].compute_at(s[CC], ko)

47 s[AL].compute_at(s[CC], kt)

48 s[BL].compute_at(s[CC], kt)

49 # Schedule for A’s shared memory load

50 ty, xi = s[AA].split(s[AA].op.axis[0], nparts=num_thread)

51 _, xi = s[AA].split(s[AA].op.axis[1], factor=num_thread * 4)

52 tx, xi = s[AA].split(xi, nparts=num_thread)

53 s[AA].bind(ty, thread_y)
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54 s[AA].bind(tx, thread_x)

55 s[AA].vectorize(xi)

56 # Schedule for B’ shared memory load

57 ty, xi = s[BB].split(s[BB].op.axis[0], nparts=num_thread)

58 _, xi = s[BB].split(s[BB].op.axis[1], factor=num_thread * 4)

59 tx, xi = s[BB].split(xi, nparts=num_thread)

60 s[BB].bind(ty, thread_y)

61 s[BB].bind(tx, thread_x)

62 s[BB].vectorize(xi)

63 s[AA].double_buffer()

64 s[BB].double_buffer()
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6.2 Problem specialization

6.2.1 Convolutions

The primary computation in the deep neural network pipelines is performing the high-dimensional
convolutions as shown in Figure 6.2. A typical layer applies localized linear affine transformation
in form of convolutions followed by pointwise non linear function called as activation functions
such as the rectified linear unit (ReLU). In this computation, the input activations of a layers are
structured as a set of 2-D input feature maps, each of which is called a channel. Each channel
is convolved with a distinct 2-D filter form the stack of filets, one for each channel. This stack
of 2-D filter form single 3-D weights of a layer. The results of the convolution at each point is
summed across all the channels to produce a single output activations that comprise one channel
of output feature map. Additional 3-D filters are used on the same input to create many output
channels. In addition, 1-D bias may be added to filtering results. Finally, multiple input feature
maps may be processed together as a batch to potentially improve filter weight reuse.

Figure 6.2 – Convolution computation
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O[z][u][x][y] = ReLU (B [u]+
C−1∑
k=0

R−1∑
i=0

S−1∑
j=0

I [z][k][Ux + i ][U y + j ]×W [u][k][i ][ j ])

0 ≤ z < N ,0 ≤ u < M ,0 ≤ y < E ,0 ≤ x < F

E = (H −R +U )/U ,F = (W −S +U )/U

(6.1)

6.2.2 Data reuse in Convolutions

There are three different forms of data reuse for the convolution computation.

1. Filter Weight Reuse within Convolution: Each filter weight is reused E ×F times in the
same input plane: Each input pixel is reused R ×S times in the same filter plane.

2. Input Feature Reuse within Convolution: Each input pixel is reused R×S times in the same
filter plane.

3. Filter Reuse across Inputs: Each filter weight is reused across the batch of N inputs.

4. Input Reuse across Filters: Each of the input pixel is reused across M filters to generate M
output channels.

Each of the input data reuse is captured by RAR dependence in polyhedral model. We want to
find the transformation and mapping that maximizes data reuse and minimize data movement
across different threads. In convolutions the amount of data reused across different dependences
vary significantly with the value of parameters. For e.g if the batch size is high data reuse from
type (3) is significant compared to other types. For the layers with larger H ×W than input
channels C , which is common for first few layers, the reuse with convolution (type 1 and 2)
dominates. For the layers with larger C than input image size H ×W , which is case for last few
layers in typical deep learning pipelines, reuse across inputs and filters (of type 3 and 4) are
significant

The cost function used in the Pluto is shown to be an effective heuristic that finds the best
transformation for most of the benchmarks. However the heuristic is agnostic to parameter values
i.e. it finds the same transformation for different problem sizes. The optimal transformations for
a given kernel will vary for different problem sizes. There is need to adapt these transformations
with the problem size especially if they vary dramatically. If we know the value of parameters at
compile time then, it is possible to find better transformations than the ones found by the current
Pluto algorithm by finding specialized schedules for a given problem size. This is especially
true for deep learning pipelines where we know the values of different convolutions are known a
priori and they vary drastically across different layers. Table 6.1 shows different problem sizes of
all the different layers of popular Resnet network. The sizes vary drastically from first layer to
the last. Typically the initial few layers operate have larger height and width (224 x 224 for layer
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layer height width in_filter out_filter hkernel wkernel hpad wpad hstride wstride

0 224 224 3 64 7 7 3 3 2 2
1 56 56 64 64 3 3 1 1 1 1
2 56 56 64 64 1 1 0 0 1 1
3 56 56 64 128 3 3 1 1 2 2
4 56 56 64 128 1 1 0 0 2 2
5 28 28 128 128 3 3 1 1 1 1
6 28 28 128 256 3 3 1 1 2 2
7 28 28 128 256 1 1 0 0 2 2
8 14 14 256 256 3 3 1 1 1 1
9 14 14 256 512 3 3 1 1 2 2
10 14 14 256 512 1 1 0 0 2 2
11 7 7 512 512 3 3 1 1 1 1

Table 6.1 – Resnet Problem Sizes

0) with smaller depth ( 3 for layer 0) whereas last layers have smaller height and width ( 7 x 7 for
layer 11) and high value for depth ( 512 for layer 11).

6.2.3 Parameter specific cost function

Consider the synthetic example shown in the figure 6.5. In this simple example there is data reuse
across both i and j loops. These reuse is captured by two RAR dependences for arrays B and C .
The actual amount of data reuse depends on parameters N and M . Two instances of the problem
with different parameter values of N and M are shown in the Figures 6.3 and 6.4. In this example
if we parallelize loop i i.e different iterations of loop i are executed by the different threads, then
the amount of data reuse is O (M). Each thread will execute the entire j loop and element B [i ]

will be reused M times. Similarly if we interchange loops and then parallelize j loop, then the
amount of data reuse is O (N ). Each thread will execute the entire i loop and element A[i ] will be
reused N times. Hence the actual amount of data reuse depends on the parameter values. We can
make use of the actual parameter values to find the better loop transformations that maximize
data reuse. In deep learning pipelines we already know the values of the parameters at compile
time so we can make use of this to find the problem specific transformations.

In polyhedral transformation framework, we formulate an ILP to find new loop transformations.
The cost proposed in Pluto [BHRS08a] is minimize the reuse distance across iterations. In this
section we propose to augment this cost function so that it also considers data reuse volume. The
main challenge in this regard is formulation of reuse volume as linear cost function. In general it
is very difficult to linearise the communication volume constraints. In order to compute the exact
amount of data reuse, we need to count the number of points in the dependences. We can use
the barvinok [VSB+07] library to compute the number of points in a polyhedra. The barvinok
function that counts the number of points in a polyhedra returns a polynomial expression of
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Figure 6.3 – Problem instance with i < 5 and j < 9
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Figure 6.4 – Problem instance with i < 9 and j < 5

1 #pragma scop
2 for(int i = 0; i < N; ++i) {
3 for(int j = 0; j < M; ++j) {
4 A[i][j] = B[i] + C[j];
5 }
6 }
7 #pragma endscop

Figure 6.5 – Synthetic example
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program parameters. It is not possible to express this polynomial expression as a constraints to
the ILP. Since we are restricting to cases where we know the exact value of parameters, we can
compute the exact value of reuse by evaluating the expression for the particular values of the
parameters. We use these values as weights in the cost function of ILP.

lexmin
np∑

i=1
(u−

i +u+
i ), w,r b,

np∑
i=1

ns∑
j=1

d j ,i ,
ns∑

j=1

dimDS j∑
i=1

(c−j ,i + c+j ,i ), (6.2)

We incorporate the reuse bound constraints by introducing new bound parameter, r b, after the
bounds of pluto cost function as shown in 6.2. The ordering of the bounds parameter determines
the priority for the new constraints. We are taking the lexmin, the leftmost bounds i.e ui have
the highest priority. In the equation 6.2, ui represents the sum of positive and negative parts of
the dependence distance bounds, w is the constant term of the dependence distance bound, d j ,i

represents the sum of parameter coefficients, c j ,i represents the sum of positive and negative
schedule coefficients. Because of the ordering of ui and r b, reuse bounds gets lower priority
than dependence distance bounds of pluto.

r b =
ns∑

j=1

dimDS j∑
i=1

−1∗w j ,i ∗ (c−j ,i + c+j ,i ), (6.3)

The actual reuse bound constraints will be of the form 6.3. The w j ,i coefficients captures the
exact amount of reuse along the c j ,i . For each RAR and RAW dependence we compute the
domain and range of the relation. For each sets in domain and range and for each dimension c j ,i

in the set, we project out all the dimension except for c j ,i , then we compute the total number of
points in this projected set using i sl_uni on_set_car d from barvinok library. w j ,i is the sum of
all counts computed for particular value of j , i . Thus w j ,i represents the total data reuse along
original orthogonal dimensions. These values are negated because we want to maximize the data
reuse and the ILP computes lexmin.

For the example shown in the Figure 6.3, the reuse bound constraints are shown in equation 6.4. In
this equation c−0,1,c+0,1 represents the positive and negative parts of i loop dimension and c−0,0,c+0,0

represents the positive and negative parts of j loop dimension. These constraints forces i loop to
be the outermost loop to exploit maximum reuse along j . Similarly for the Figure 6.4, the resue
bounds are shown in the equation 6.5. These constraints forces j to be the outermost loop which
results in maximum reuse along i dimension.

r b = (−5)∗ c−0,0 + (−5)∗ c+0,0 + (−9)∗ c−0,1 + (−9)∗ c+0,1 (6.4)
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r b = (−9)∗ c−0,0 + (−9)∗ c+0,0 + (−5)∗ c−0,1 + (−5)∗ c+0,1 (6.5)
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6.3 Auto tuning

The second part of the tvm schedule is finding the optimal grid sizes, block sizes, tile sizes,
unroll factors etc.. These tuning parameters have a significant impact on the performance of
the GPU kernel. Hence, in order to achieve peak performance it is very important to choose
the optimal tuning parameters. Different tensor operators have different optimal values for tile
sizes, grid sizes, block sizes etc.. Even for same tensor operator these optimal values varies
across different GPU architectures. Also, these optimal values varies with sizes and shapes of the
tensors. We need to find optimal values for tuning parameters for each tensor operation, for each
GPU architecture that is specialized to fixed tensors size and shape.

The most common approach to finding optimal tuning parameters is exhaustive search. Foreach
tuning parameter we define a valid range of values. The total search space is all possible
combinations of values within these valid range. To find the optimal value of the tuning parameters
we iterate over all the valid configurations in the search space while keeping track of configuration
with least execution time. For each configuration we generate the instantiated kernel, compile it
and run it to measure the execution time. This exhaustive search is guaranteed to find the optimal
configuration. But, the iterating over every valid configuration takes a lot of time. Since the
optimal configuration is different for different tensor sizes, architectures, we need to repeat the
entire search if one of these varies. It is not practical to do expensive exhaustive search for every
change in problem size since it will take hours to complete.

There are several techniques proposed to reduce the search space needed to explore. These
techniques use several heuristics to selectively choose which candidates to explore based on the
performance of already evaluated candidates. These heuristics does not guaranteed to find the
optimal configuration even if it is allowed to run for hours. The genetic search for example in
each generation a certain number of workers start with different configurations that are slightly
different from each other and pick the best performing one the next generation. With each
generation there is a definite improvement of execution time but there is no upper bound on
the number of generations need to find the optimal configuration. These techniques still take
few hours to find a better configuration and the search needs to be repeated for every different
architectures and tensor sizes.

Another approach for autotuning is to use GPU performance model. In these techniques, build
an analytical model that can estimate the execution time of a kernel. These models is used to
filter the search space to eliminate the need to evaluate the worst performing configurations.
The success of these methods depends on the accuracy of the performance model to estimate
kernel execution time. If the model‘s predicted execution time is far from the actual execution
time, we will not be able to prune the large parts of search space or we might prune the optimal
configuration. An accurate modelling of GPU performance is a very challenging task. Even for a
single kernel, the GPU kernel execution time varies across different architectures and input sizes.
To build an accurate performance model one need to model how a given kernel is mapped into gpu
warps, how these warps are scheduled, latencies of various instructions, memory access latencies,
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warp scheduler etc.. Modelling each of these aspects in a very challenging. For example to model
the memory access latencies depends on peak memory bandwidth of the system, weather access
is coalesced or not, weather the requested data is cached or not, number of outstanding memory
requests. Most of the prosed model are either not very accurate enough or only applicable for
limited set of kernels.

6.3.1 Performance model from data

In this section we will show how to build an accurate performance model from sample data of
actual execution and use this model during autotuning to select the top few configurations. We
want the model that learns the underlying pattern of kernel execution and its variance across
input parameter space. We use Multilayer Perceptron (MLP) to build performance model that
estimates the execution time. The basic unit of MLP is a linear model that does the dot product of
all the inputs and the weights in the layer. A layer is formed by may such independent units that
are connected to same inputs but with different weights. A MLP consists of many such layers
stacked together with the outputs of previous layer connected as a input to the current layer. It is
shown that an MLP with suitable weights can approximate any function. Initially these weights
are chosen at random. During the supervised training phase, inputs are propagated through the
network to produce the output, which is compared with the actual output to produce the error.
In the backpropogation pass, this error is propagated back through all the layers while weights
are adjusted using gradient descent. This process is repeated for all the training data, while the
weights are getting tuned.

6.3.2 Operator specific model

The main objective to model is to capture the underlying GPU execution pattern and how this
various with changes in input sizes and tuning parameters. We build a MLP model that predicts
the execution time of a given kernel. The inputs to this model is problem sizes, tuning parameters
with execution time as single output. To train the model we collect the data by running kernel
for different input sizes and tuning parameters. Since the input and tuning parameter space is
possibly infinite we restrict them by choosing reasonable upper bounds. We collect the execution
data for the random configurations obtained by uniform sampling of the search space. Note that
not all the configurations sampled this way will be valid. If some of the selected configurations
turned out to be invalid then we set execution time to be infinity. We train model with 90% of
data, the rest is used as validation data set to measure the mean square error. Figure 6.8 shows
the changes in error with number of data samples used to train. As the model gets trained with
more and more data the mean square errors keeps reducing until it stabilizes. The MLP model
like most neural networks a lot of data to converge hence, we may need to iterate the data many
times before the model converges. If the obtained error rate is not low enough, then we can either
increase the number of hidden layers or increase the amount of training data. In practice we
found that a 5 layer MLP model with several thousand samples iterated over multiple times was
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sufficient for the error to converge.
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Figure 6.6 – Multi Layered Perceptron(MLP)

Now we have a model that can predict the execution time of an operator for a given configuration.
This can used to prune the search space and pick the best configuration for any given problem
sizes. We evaluate the model for all valid configurations in the search space while keeping track
of top N configurations that have the minimum execution time. Only these top candidates are
evaluated on the GPU to choose the best performing configuration. The time to evaluate the
model is always a constant for any configuration and is order of magnitude faster than running
the kernel on the actual GPU. Hence, even though we evaluate model in the entire search space,
there is significant reduction in the time taken to find the best candidates compared to exhaustive
evaluation on GPU. Moreover the model can be evaluated in parallel to speedup this process. In
practice the MLP model based tuning will take under a minute compared to hours required for
exhaustive search on GPU. An accurate model ensures that we will miss any good configurations
to evaluate while pruning the bad configurations that take a lot of time to run on GPU. The most
time consuming operation in the process is collection of data to build the model, which is in order
of hours. Once the model is built for a given operator, the optimal configuration for any given
problem size can be obtained in matter of seconds. This approach is good fit for deep learning
models where several operators are frequently used with different problem sizes.

6.3.3 Transfer learning across architectures

The performance model that we learned from data is specific to a given architecture. The kernel
execution time various across different GPU architectures. Hence, we need to build a different
model for each of the different architectures. This requires collecting data on each of these
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architectures which will take hours. There is some similarity between different GPU architectures.
We can exploit these similarity by using already learnt model as the starting point of training
rather than random values. This will reduce the amount of new data needed to converge. We
need just few thousand samples to fine tune the model to adapt to new architecture. This transfer
learning enables us to quickly port the an operator‘s model to new architectures. Once the model
is built offline for an operator on a given architecture, it can ported to other architectures with
very little new data.

6.3.4 Transfer learning across operators

We have seen how to build an accurate performance model for a given specific tensor operator.
The most time consuming part of the process is the collection of data needed to build the model.
An accurate model requires a few hours of sample data. Once the model is built it can predict
the execution time for different problem sizes but only for specific operator. Even if the tensor
operator various slightly we need to build an new model from the scracth which requires few
more hours to data. In this section we explore the possibility of transfer learning across different
tensor operators.

In general the performance characteristics greatly differs across different class of programs hence,
it will be very challenging to build a universal model that predicts the execution time for all
class of programs. However the performance characteristics within same class of programs tend
to similar e.g. most 1D stencil computations tend to behave similar to each other. Hence, the
idea is to build a performance model for specific class of programs. The key problem is how
to differentiate between different class of problems. We need a set of features that are similar
for programs within a given class and differ with the programs in a different class. There are
various metrics such as amount of data and computation, number of different instructions etc.
that are used as feature vectors. For the programs that can be represented in polyhedral model,
we think there is a much more accurate feature vector that abstracts the program execution i.e.
dependences.

In the polyhedral model, a dependence exits between two iterations if and only if both the
iterations access the same data. Depending on the type of accesses the dependence could be
Read-after-Read (RAR), Read-after-Write (RAW) , Write-after-Read (WAR) or Write-after-
Write (WAW). RAR and RAW dependences capture the exact data reuse between iterations.
This data-flow information at the granularity of iterations acts as accurate signature for a given
program. Note that, in most of the AST representations the data-flow information is Also,
theses dependences can be concisely represented in matrix form. These two properties makes
dependences an excellent choice as feature vector for building performance models. By using
dependences as feature vectors we are grouping the programs with similar dependence into
same class. The programs with similar dependence pattern tend to have similar performance
characteristics and hence they act as a good classifier.
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We try to build a general performance model for TVM operators with dependences as input
feature vector. Various TVM operator could have different number of iterators. We assume that
there could be maximum of 7 iterators, this is was sufficient for the deep learning primitives
that we are interested in. The trip count of different loops is captured in the domain, these are
also encoded in the feature vector. Different TVM operators could have variable number of
dependences e.g. Matmul operator has two RAR dependences for the access A and B , and one
RAW dependence for C . We merge multiple type of dependences together by taking a union. In
addition we also add maximum reuse weights along each dimension to account for the amount
of reuse. The complete feature vector include the loop bounds, dependence vectors along with
the reuse bounds and the tuning parameters. To build the general performance model, we collect
the uniformly sampled data with the mix of different operators. The model now captures the
execution profile for different operators classified as per dependence pattern. Thus the dependence
as a feature vector enables transfer learning across different TVM operators.
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Problem Size abbreviation Pluto Adaptive Pluto

(1, 64, 56, 256, 1, 1, 0) ps1 0.99 1.13

(1, 256, 56, 64, 1, 1, 0) ps2 2.44 2.6

(1, 256, 56, 128, 1, 2, 0) ps3 2.5 3.1

(1, 128, 28, 512, 1, 1, 0) ps4 2.4 2.9

(1, 256, 56, 512, 1, 2, 0) ps5 2.1 2.7

(1, 512, 28, 128, 1, 1, 0) ps6 3.4 3.9

(1, 512, 28, 256, 1, 2, 0) ps7 2.4 3.2

Table 6.2 – SpeedUp of Convolution kernel in Resnet-50 with NCHW layout

6.4 Experimental results

All the experiments are performed on with Nvidia Quadro P6000 GPU, powered by Nvidia Pascal
architecture attached to Intel Xeon CPU E5-2683 with 128GB RAM. All the benchmarks are
compiled with the NVIDIA CUDA 9.0 toolkit, with the -O3 optimization flag.

6.4.1 Adaptive schedule
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Figure 6.7 – SpeedUp of Convolution kernel with Resnet-50 workloads

Table 6.2 shows the speedup of convolution kernel with Resnet-50 workloads. The baseline for the
experiments is the manual tvm schedule. For all the experiments the schedule is computed with
scheduler and optimal parameter values are computed through autotuning. The adaptive schedule
performs better than the default pluto schedule in all the cases. This shows the significance of
data reuse constraints, which adopts the schedule as per tensor sizes and batch sizes. When the
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batch size is small, it is more profitable to parallelize channel, height and width loop, on the other
hand if the batch size is large it is more profitable to parallelize batch, channel, height loops. The
adaptive schedule enables such transitions compared to the fixed schedule of default pluto.

6.4.2 Model accuracy
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Figure 6.8 – Reduction in Mean square error with number of samples

Figure 6.8 shows the reduction in the mean square error with the increase in the number of
samples used to build the model. The mean square error for at T samples is measured y training
the MLP model with randomly chosen T samples and evaluating the mean square error of
execution times for N −T samples where N is the total number of samples in the search space.
At the beginning of the training all the weights of the model are randomly initialized. The model
is trained with batch size of 50. The choice of batch size up to 500 does not seem to have an
effect on the accuracy of the model. The model is trained with the same training samples multiple
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Problem Size MLP Best Conf Exhaustive Best Conf MLP Time/ Exhautive time
(5124, 9124, 2560) (8, 16, 4, 4, 8) (4, 8, 4, 4, 16) 1.03
(35, 8457, 2560) (4, 16, 8, 4, 4) (4, 16, 8, 4, 4) 1.09
(7680, 16, 2560) (4, 16, 8, 8, 4) (4, 8, 16, 4, 4) 1.01
(3072, 64, 1024) (4, 8, 16, 4, 4) (4, 8, 16, 4, 4) 0.96

(7680, 5481, 2560) (8, 32, 4, 8, 4) (8, 32, 4, 8, 4) 1.00
(1024, 700, 512) (8, 16, 4, 8, 4) (8, 16, 4, 8, 4) 0.98

(8448, 24000, 2816) (8, 32, 4, 8, 4) (8, 32, 4, 8, 4) 1.00
(8448, 48000, 2816) (8, 32, 4, 8, 4) (8, 32, 4, 8, 4) 0.99
(512, 48000, 2816) (4, 32, 4, 16, 4) (4, 32, 4, 16, 4) 1.01

Table 6.3 – Matrix multiplication kernel MLP tune vs Exhaustive search

times. This repeated training of model is referred to as multiple EPOCH training. The accuracy
of the model continuous to increases with multiple EPOCH. We need up to 20 EPOCHs before
the mean square error stabilizes. As shown in the figure 6.8 we get more accurate performance
models with the higher number of randomly chosen training samples. The MLP model for matrix
multiplication needs around 20 thousand training samples to build performance model that can be
used for auto tuning. This whole process to build a performance model with 20 thousand samples
takes only few minutes in Pytorch. The majority of time is spent on collecting the training data
by randomly sampling the search space, generating the kernel for the chosen sample, running it
on the GPU and collecting the execution time of the kernel. This entire process will take around
30 minutes for Matrix multiplication kernel for given GPU architecture.

6.4.3 MLP tuning vs Exhaustive

Once we built the model for a given kernel and a given architecture, it can used to find the optimal
configuration for any given problem sizes. The model is evaluated on all the valid configurations
in the search space. We keep track of top 100 configurations as evaluated by MLP performance
model. A kernel is generated for each of the top 100 configurations. These kernels are run on
GPU and the kernel with least running time is chosen among top 100 kernels. Table 6.3 shows
the performance comparisons of MLP based tuning and Exhaustive search for a few selected
problem sizes in DeepBench [Bai]. This experiments were conducted on reduced search space
that includes only powers of two parameters values. The exhaustive search take hours to complete
on full search space. As shown in the table MLP based tuning finds the same configuration as
the Exhaustive search for most of the problem sizes. Even for the cases when the exhaustive
configuration was different from the MLP tune configuration, the runtime of the kernels are
very close. We did the same experiments for all the 150 different problem sizes listed in the
DeepBench [Bai]. Out of 150 problem sizes both MLP tune and Exhaustive search finds the same
configuration for 103 problem sizes. For the rest 47 problem sizes where the configurations were
different the difference in kernel runtime is within 1% of the exhaustive time. This shows the
effectiveness of MLP-tune in which we are able to find close to optimal configuration in minutes
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rather than hours as in Exhaustive search.

6.4.4 Performance of Generated kernels
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Figure 6.9 – Speedup MLP Tune vs. Cublas

Figure 6.9 shows the performance comparisons of MLP tune generated kernel vs Cublas (Nvidia‘s
optimized GEMM library). The baseline used for comparisons is TVM manual schedule. The
TVM library has a single manually specified schedule for GEMM. A single schedule will not be
optimal for all problem sizes. A significant performance 2.4x to 20x can be gained by autotuning
and finding optimal schedule for a given problem size. Cublas is a highly optimized library
that includes various ninja optimizations to achieve near peak performance. Not all of these
optimizations can be implemented with TVM especially low level assembly optimizations. Hence
for some problem sizes Cublas is significant faster than MLP tune. However there are several
problem sizes for which MLP tune outperforms Cublas. This shows the limitations of library
based approaches. Even though highly optimized Cublas is not optimal for every problem size.
Having a tunable compiler framework with autotuning can provide flexibility to generate optimal
kernel for any given size. Compiler based approach will also be able to perform optimizations
across library calls, such as fusion, and can generate highly optimal kernel for any given sequence
of library calls.

6.4.5 Tuning Convolution kernels

Figure 6.10 shows the speedup with MLP tune and exhaustive search for Convolution kernel in
HWCN data layout. Here H and W are height and width of the input image, C represents number
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Problem Size Abbreviation SpeedUp With Exhaustive SpeedUp With MLP Tune
[1, 3, 224, 64, 7, 2] ps1 18.38395385 16.64207728
[1, 64, 56, 64, 3, 1] ps2 6.969599756 6.642836342
[1, 64, 56, 64, 1, 1] ps3 4.862487361 4.448658649
[1, 64, 56, 128, 3, 2] ps4 7.019564531 6.289228159
[1, 64, 56, 128, 1, 2] ps5 4.907020873 4.098256735
[1, 128, 28, 128, 3, 1] ps6 7.234597156 6.465480729
[1, 128, 28, 256, 3, 2] ps7 19.74151355 17.59855636
[1, 128, 28, 256, 1, 2] ps8 5.122047244 4.38047138
[1, 256, 14, 256, 3, 1] ps9 7.780074551 7.016809291
[1, 256, 14, 512, 3, 2] ps10 9.284042899 8.331000292
[1, 256, 14, 512, 1, 2] ps11 5.882042254 5.47704918
[1, 512, 7, 512, 3, 1] ps12 19.9703272 19.57655868
[1, 128, 122, 128, 3, 1] ps13 7.436881548 7.398414548
[1, 1, 224, 64, 5, 1] ps14 18.71373782 18.68936724
[1, 64, 224, 64, 3, 1] ps15 7.66477562 7.595536122
[1, 64, 224, 32, 3, 1] ps16 36.97738925 33.1224634
[1, 32, 224, 9, 3, 1] ps17 22.74328874 22.98921855

Table 6.4 – SpeedUp MLP Tune and Exhaustive Search over TVM Manual schedule
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Figure 6.10 – Speedup MLP Tune vs. Exhaustive for Convolution HWCN

of channels in the input and N in the number of images in the batch. We can observe that there is
significant speedup with autotuning and MLP based tuning closely follows the speed up with
Exhaustive search even with the large search space for convolution kernel. The search space
for convolution tuning is exponentially larger than matrix multiplication kernel in the order of
10E7. Even with such large space MLP tune pruned most of the candidates and pick the top 100
candidates whose performance matches closely to Exhaustive search obtained by evaluating the
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entire search space.

6.4.6 MLP Tune vs other search techniques

There are several search techniques that can be used for autotuning. [MAS+16] proposed a
heuristics based approach to automatically find the schedules for CPUs in Halide. The heuristics
are derived based on the maximizing the arithmetic intensity using bounds analysis. [LGA+18]
extended this approach to find schedules for convolution kernels on GPUs. Compared to this
manually derived heuristics that are specific to given operator we learn the performance model
automatically in a operator and architecture agnostic way. Opentuner [AKV+14] a framework for
proposed for building domain-specific multi-objective program autotuners. The OpenTuner uses
ensembles of disparate search techniques simultaneously for autotuning. It will automatically
select the best performing search technique for a given objective and search space. In this section
we present comparisons MLP tune to various other search techniques in Opentuner.

The comparison with other search techniques is performed on convolution kernel with problem
sizes as (1,3,224,64,7,2). The search space is reduced with only powers of two for the parameter
values. The baseline for all the measurements is tvm default schedule. The MLP tune for this
example will result in 17.5× speed up. All the search techniques are run with 15 mins and 30
mins time out value. When the best time is infinity indicates that the technique was not able to
find any valid schedule before the timeout. As shown in the table 6.5 there are several techniques
such as RandomNelderMead, RandomTorczon etc. which are unable to find any valid scheudle
even after 30 mins. The maximum speedup is obtained is 11.01× by ga-OX3 (a variant of genetic
algorithm) that ran for 30 mins. This is much less than 17.5× speedup obtained using MLPTune
within few minutes. This shows the benefits of performance model based MLP tuning. The
other big advantage is reuse of patters that is learned only once in MLP tuning where as with
the generic search techniques with every new problem sizes, search is started afresh. There is no
reuse of the knowledge that is learnt from previous searches. The same performance model once
built is reused for different problem sizes.

6.4.7 Transfer Learning

The largest time consuming part of the MLP tuning is collecting data to build the performance
model. Depending on size of search space it will take around 30 mins to 1 hr to collect uniformly
sampled training data. Ideally we need to build performance model one for each architecture
since each architecture could have different performance characteristics. But since there is some
similarity between GPU architectures. We can exploit this similarity by reusing the already learnt
weights across architectures.

Figure 6.10 shows the Mean Square Error with random initialized weights vs. starting with
trained performance model on another architecture. As we can observe the starting error is quite
low if we start with the weights of the pre trained model. It requires fewer training samples on the
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Technique Best time (30 min) Speedup (30 min) Best time (15 mins) Speed up (15 mins)
PureRandom 2.16 8.10 1.63 10.74
ga-OX3 1.59 11.01 inf nan
ga-OX1 1.63 10.75 1.90 9.23
ga-PX inf nan 1.67 10.48
ga-CX 1.63 10.75 1.67 10.49
ga-PMX 1.86 9.43 inf nan
ga-base 1.63 10.74 1.73 10.15
UniformGreedyMutation05 inf nan 1.72 10.17
UniformGreedyMutation10 1.73 10.15 1.60 10.97
UniformGreedyMutation20 1.76 9.98 1.63 10.75
NormalGreedyMutation05 inf nan inf nan
NormalGreedyMutation10 3,713.82 0.00 130.75 0.13
NormalGreedyMutation20 inf nan inf nan
DifferentialEvolution 1.87 9.40 1.86 9.42
DifferentialEvolutionAlt 1.86 9.44 1.90 9.24
DifferentialEvolution_20_100 1.60 10.98 1.63 10.73
RandomNelderMead inf nan inf nan
RegularNelderMead inf nan 5.75 3.05
RightNelderMead 1,131.74 0.02 inf nan
MultiNelderMead 5.28 3.32 13.68 1.28
RandomTorczon inf nan 1.59 11.02
RegularTorczon 3.63 4.83 inf nan
RightTorczon inf nan 10,519.13 0.00
MultiTorczon 5.33 3.29 4.75 3.69
PatternSearch inf nan inf nan
PseudoAnnealingSearch 1.63 10.76 1.86 9.43
pso-OX3 1.84 9.52 inf nan
pso-OX1 1.67 10.47 1.75 10.00
pso-PMX 1.83 9.58 2.23 7.87
pso-PX 2.01 8.72 2.13 8.24
pso-CX inf nan 1.73 10.14
GGA 3,385.71 0.01 inf nan
AUCBanditMutationTechnique inf nan inf nan
AUCBanditMetaTechniqueA 1.69 10.39 1.73 10.15
AUCBanditMetaTechniqueB 1.59 11.01 1.90 9.23
AUCBanditMetaTechniqueC 2.77 6.33 2.76 6.34
PSO_GA_Bandit 1.73 10.13 2.02 8.70
PSO_GA_DE 1.63 10.74 1.60 10.96
ComposableDiffEvolution 1.87 9.39 2.02 8.68
ComposableDiffEvolutionCX 1.90 9.22 1.68 10.45
AUCBanditMetaTechniqueA 1.63 10.74 inf nan

Table 6.5 – Search techniques comparison
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Figure 6.11 – Reduction in Mean square error with pre existing model

new architecture to build performance model. This is a very attractive feature of the MLP tunes
with allows us to reuse performance model patterns across architectures. All the other search
based tuning techniques need to start from scratch.
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7 Conclusion and Perspectives

In this chapter, we conclude the dissertation with an overview of our contributions and a prospect
of future work.

7.1 Conclusion

Loop transformations such as tiling and fusion are essential to achieve high performing on com-
plex modern hardware with deep cache hierarchies. In recent years, the polyhedral transformation
model is proven to a very effective technique for performing loop transformations in both industry
and research compilers. The main advantage of the model is the rigorous formalism it provides in
terms of precisely analysing loop dependencies at the granularity of individual iterations. These
dependencies makes it possible to formulate the problem of finding profitable loop transformation
as an ILP problem. There were many cost functions that were proposed as an objective to this
ILP, Pluto being the most practical and successful. In this dissertation, we study few possible
ways to improve upon the pluto heuristic by modelling hardware characteristics such as spatial
locality and application specific information such as reductions. We also extend it to model data
reuse volume so that schedules that are adaptive to problem sizes.

7.1.1 Handling reductions

We presented language constructs and compilation methods to express arbitrary reductions on
user-defined data types, and dependence-based abstractions of reductions that enable polyhedral
loop nest optimizations on loops carrying reductions. Combining polyhedral and template-based
code generation, we are able to perform complex optimizations for user-defined reductions on
GPUs, reaching close to peak performance. This approach enables a generic polyhedral compiler
to produce highly efficient code for reductions while offering maximum expressiveness to the
programmer.
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7.1.2 Spatial locality

We proposed an affine scheduling algorithm that accounts for multiple levels of parallelism
and deep memory hierarchies, modeling both temporal and spatial effects without imposing a
priori limits on the space of possible transformations. The algorithm orchestrates a collection of
parametrizable optimization problems, with configurable constraints and objectives, addressing
non-convexity without increasing the number of discrete variables in linear programs, and model-
ing schedules with linearly dependent dimensions that are out of reach of a typical polyhedral
optimizer.

Our algorithm is geared towards the unified modeling of both temporal and spatial locality
effects resulting from the cache hierarchy of CPUs and GPUs. It generates sequential, parallel or
accelerator code in one optimization pass, matching or outperforming comparable frameworks,
whether polyhedral, syntactic, or a combination of both. We discuss the rationale for this unified
algorithm in much detail, as well as its validation on representative computational programs.

7.1.3 SLAMBench

We studied the challenges of using polyhedral compilation for large end-to-end real-world
benchmark called SLAMBench. We shown that static affine restrictions of the polyhedral model
can be eliminated in some cases with the summary functions by encapsulating the non-affine
parts of the program. This is a powerful abstraction that is needed for real-world benchmarks.
We also show the need of a runtime to avoid redundant data copies between device and host. We
propose and implement prl runtime library which allows programmers to express array data-flow
information of non-affine parts of the program. Our experimental results show that we achieve
same performance as the manually optimized SLAMBench kernels drastically reducing the
programmer effort while proving portable performance.

7.1.4 DeepLearning pipelines

We explored the challenges with polyhedral compilation of deep learning pipelines. We extract
the polyhedral representation from TVM and automatically determine the TVM schedule using
polyhedral ILP scheduler and autotuning. We propose additional linear data reuse constraints for
ILP scheduler with objective to minimize overall communication volume. This enables the ILP
to adapt the schedule to the changes in tensor sizes and shapes. We also proposed a performance
model based autotuning technique that drastically reduces the autotuning time. We showed that
we can automatically build an accurate performance model for any given operator on given
architecture. We pruned the search space with this accurate performance model and were able
to pick only few hundred top candidates. We were able to cut down the autotuning time from
hours to minutes since we evaluate only these top candidates on hardware. Our experimental
results show that we were able to achieve the same performance as expensive exhaustive search
in most cases. We showed that our technique performs much better that the traditional search
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based techniques and also enables transfer learning.

7.2 Future Work

In this dissertation we studied some of the challenges of using polyhedral model for loop
transformations in DSL compilers. We particularly extended the scheduler to handle applicable
specific information such as reductions, parameter values and modelling hardware characteristics
such as spatial locality, coalescing. However the cost function used is still a heuristic and does
not model all the hardware characteristics. The major restriction is using all the new constraints
has to be linear for the ILP solver. This is one of the major limitation in coming up with a more
realistic cost function that accurately models the actual execution time on the hardware.

7.2.1 Learning hardware specific cost functions

Ideally we want to choose an accurate cost function specific to a given function and hardware that
predictions the execution time for different schedules. Then we can choose the best performing
schedule among all the valid schedules. This is a very challenging task. Given the recent advances
with the deep learning, it is possible to automatically learn such cost functions given enough
data. This problem has been explored before in the context of iterative optimizations [PBCV07,
PBB+10]. There is scope to improve on the efficiency of such techniques using deep learning.

7.2.2 Fusion heuristics

Similar to work flow proposed for autotuning, we can build an accurate model to predict the
performance of fused kernels. There are previous works [BDGR10, JB18] on building the
analytical models for fusion which are not hardware specific. We can build much more accurate
models automatically from the actual execution times on hardware. Most of the heuristics used in
the compilers can be replaced with more accurate automatically learning deep learning models.
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A An appendix

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat
ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget,
consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi
tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus
rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor
gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem
vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis
ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu,
accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.
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ABSTRACT

In  this  thesis,  we  study  the  applicability  of  the  polyhedral  model  to  the  compilation  of
Domain-specific languages, focussing on image processing and deep learning pipelines.
We  identify  a  few  limitations  of  state-of-the-art  polyhedral  compilation  toolchains  and
propose solutions to address these. We extend a polyhedral toolchain to handle reductions
which are a key part of image processing and deep learning pipelines and often become
the bottleneck if  not parallelized. We also extend the Pluto algorithm to account for the
spatial locality in addition to temporal locality. We also propose a schedule specialization
method for given problem sizes. Finally, we propose techniques to reduce autotuning time
from hours to minutes. 

MOTS CLÉS

Parallélisation automatique, compilation de DSL, compilation pour le traitement d'image, 
compilation pour l'apprentissage en profondeur, génération de code pour GPU

RÉSUMÉ

Dans cette thèse, nous étudions l'applicabilité du modèle polyédrique à la compilation de langages
spécifiques  à  un  domaine,  principalement  pour  les  pipelines  de  traitement  d'images  et
d'apprentissage  en  profondeur.  Nous  identifions  quelques  limitations  des  chaînes  d’outils  de
compilation polyédrique existants et proposons des solutions pour les résoudre. Nous étendons une
chaîne d'outils  polyédrique pour gérer les réductions,  qui  sont  un élément clé des pipelines  de
traitement  d’images  et  d’apprentissage  en  profondeur,  et  deviennent  souvent  des  goulots
d’étranglement s’ils ne sont pas parallélisés. Nous étendons également l'algorithme Pluto pour tenir
compte de la localité spatiale en plus de la localité temporelle.  Nous proposons également une
méthode  de  spécialisation  de  l'ordonnancement  pour  des  tailles  de  problèmes  données.  Nous
proposons enfin des techniques permettant de réduire le temps d'autotuning de quelques heures à
quelques minutes.

KEYWORDS

Automatic parallelization, DSL compilation, Image-processing compilation, Deep learning 
compilation, GPU code generation
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