
Modular Verification of SPARCv8 Code?

Junpeng Zha1, Xinyu Feng2,B, and Lei Qiao3

1 University of Science and Technology of China
2 State Key Laboratory for Novel Software Technology, Nanjing University

xyfeng@nju.edu.cn
3 Beijing Institute of Control Engineering

Abstract. Inline assembly code is common in system software to inter-
act with the underlying hardware platforms. Safety and correctness of
the assembly code is crucial to guarantee the safety of the whole sys-
tem. In this paper we propose a practical Hoare-style program logic for
verifying SPARC assembly code. The logic supports modular reason-
ing about the main features of SPARCv8 ISA, including delayed control
transfers, delayed writes to special registers, and register windows. We
have applied it to verify the main body of a context switch routine in a
realistic embedded OS kernel. All of the formalization and proofs have
been mechanized in Coq.

1 Introduction

Operating system kernels are at the most foundational layer of computer software
systems. To interact directly with hardware, many important components in OS
kernels are implemented in assembly, such as the context switch code or the
code that manages interrupts. Their correctness is crucial to ensure the safety
and security of the whole system. However, assembly code verification remains a
challenging task in existing work on OS kernel verification (e.g. [18, 9, 8]), where
the assembly code is either unverified or verified based on operational semantics
without a general program logic.

SPARC (Scalable Processor ARChitecture) is a CPU instruction set architec-
ture (ISA) with high-performance and great flexibility [2]. It has been widely used
in various processors for workstations and embedded systems. The SPARCv8
ISA has some interesting features, which make it a non-trivial task to design a
Hoare-style program logic for assembly code.

– Delayed control transfers. SPARCv8 has two program counters pc and npc.
The npc register points to the next instruction to run. Control-transfer in-
structions in SPARCv8 change npc instead of pc to the target program point,
while pc takes the original value of npc. This makes the control transfer to
happen one cycle later than the execution of the control transfer instructions.

? This work is supported in part by grants from National Natural Science Foundation
of China (NSFC) under Grant Nos. 61632005, 61502442 and 61502031.

CALLER : ChangeY :

. . .
1 mov 1, %o0
2 call ChangeY
3 save %sp, −64, %sp

4 mov %o0, %l0
. . .

5 rd Y, %l0
6 wr %i0, 0, Y
7 nop

8 nop

9 nop

10 ret

11 restore %l0, 0,%o0

Fig. 1. An Example for SPARC Code

– Delayed writes. The wr instruction that writes a special class of registers does
not take effect immediately. Instead the write operation is buffered and then
executed X cycles later, where X is a predefined system parameter which
usually ranges from 0 to 3.

– Register windows. SPARCv8 uses register windows and the window rotation
mechanism to avoid saving contexts in the stack directly and achieves high
performance in context management.

We use a simple example in Fig. 1 to show these three features. The func-
tion CALLER calls ChangeY, which updates the special register Y and returns its
original value.

ChangeY requires an input parameter as the new value for the special register
Y. CALLER calls ChangeY at line 2, and pc and npc point to line 2 and 3 respec-
tively at this moment. The call instruction changes the value of pc to npc and let
npc points to ChangeY at line 5, which means the control-flow will not transfer
to ChangeY in the next cycle, but in the cycle after the execution of the save

instruction following the call. Similarly, when ChangeY returns (at line 10), the
control is transferred back to the caller after executing the restore instruction
at line 11. We call this feature “delayed control transfers”.

SPARCv8 uses the save instruction (at line 3 in the example) to save the
current context and restore (at line 10) to restore it. Its 32 general registers are
split into four logic groups as global (r0 ∼ r7), out (r8 ∼ r15), local (r16 ∼ r23)
and in (r24 ∼ r31) registers. Correspondingly, we give aliases “%g0 ∼ %g7”,
“%o0 ∼ %o7”, “%l0 ∼ %l7” and “%i0 ∼ %i7” for these groups respectively.
The out, local and in registers form the current register window. The local regis-
ters are for private use in the current context. The in and out registers are shared
with adjacent register windows for parameters passing. The save instruction ro-
tates the register window from the current one to the next. Then the local and in
registers in the original window are no longer accessible, and the original out reg-
isters becomes the in registers in the current window. The restore instruction
does the inverse. The arguments taken by the save and restore instructions
are irrelevant here and can be ignored.

At line 6, the wr instruction tries to update the special register Y with the
value of %i0⊕0 (bitwise exclusive OR). However, the write is delayed for X
cycles, where X is some predefined system parameter that ranges from 0 to

2

3. For portability, programmers usually do not rely on the exact value of X
and assume it takes the maximum value 3. Therefore three nop instructions are
inserted. Reading of Y earlier than line 9 may give us the old value. This feature
is called “delayed writes”.

These features make the semantics of the SPARCv8 code context-dependent.
For instance, a read of a special register (e.g. the register Y in the above example)
needs to make sure there are enough instructions executed since the most recent
delayed write. As another example, the instruction following the call can be
any instruction in general, but it is not supposed to update the register r15,
which contains the return address saved by the call instruction. In addition,
the delayed control transfer and the register windows also allow highly flexible
calling conventions. Together, they make it a challenging task to have a Hoare-
style program logic for local and modular reasoning of SPARCv8 assembly code.

Working towards a fully certified OS kernel for aerospace crafts whose inline
assembly is written in SPARCv8, we try to address these challenges and propose
a practical program logic for realistically modelled SPARCv8 code. We have
applied our logic to verify the main body of the task context switch routine in
the kernel. Our work is based on earlier work on assembly code verification but
makes the following contributions:

– Our logic supports all the above features of SPARCv8. We redefine basic
blocks to include the instruction following the jump or return as the tail of
a block, which models the delayed control transfer. To reason about delayed
writes, we introduce a modal assertion �tsr 7→ w, saying that the special
register sr will hold the value w in up to t cycles. We also give logic rules
for save and restore instructions that do register window rotation.

– Following SCAP [7], our logic supports modular reasoning of function calls
in a direct-style. We use the standard pre- and post-conditions as function
specifications, instead of the binary assertion g used in SCAP. This allows
us to reuse existing techniques (e.g. Coq tactics) to simplify the program
verification process. The logic rules for function call and return is general
and independent of any specific calling convention.

– We give direct-style semantic interpretation for the logic judgments, based
on which we establish the soundness. This is different from previous work,
which either does syntactic-based soundness proof (e.g. SCAP [7]) or treats
return code pointers as first-class code pointers and gives CPS-style seman-
tics. Those approaches for soundness make it difficult to verify the interaction
between the inline assembly and the C code in the kernel, the latter being
verified following a direct-style program logic.

– Context switch of concurrent tasks is an important component in OS kernels.
It is usually implemented as inline assembly because of the need to access
registers and the stack. We verify the main body of the context switch routine
in a realistic embedded OS kernel for aerospace crafts, which consists of
around 250 lines of SPARCv8 code.

The program logic, its soundness proof and the verification of the context switch
module have been mechanized in Coq[1].

3

(Word) w, f, l ∈ Int32

(Prog) P ::= (C, S, pc, npc) (CodeHeap) C ∈ Word ⇀ Comm
(State) S ::= (M,Q,D) (RState) Q ::= (R,F)

(Memory) M ∈ Word ⇀ Word (ProgCount) pc, npc ∈ Word
(OpExp) o ::= r | w (AddrExp) a ::= o | r + o

(Comm) c ::= i | call f | jmp a | retl | be f

(SimpIns) i ::= ld a rd | st rs a | nop | save rs o rd | restore rs o rd
| add rs o rd | rd sr rd | wr rs o sr | . . .

(InstrSeq) I ::= i; I | jmp a; i | call f; i; I | retl; i | be f; i; I

Fig. 2. Machine States and Language for SPARCv8 Code

In the rest of paper, we present the program model and operational semantics
of SPARCv8 in Sec. 2. Then we propose the program logic in Sec. 3, including
the inference rules and the soundness proof. We show the verification of the main
body of the context switch routine in Sec. 4. Finally we discuss more on related
work and conclude in Sec. 5.

2 The SPARCv8 Assembly Language

We introduce the key SPARCv8 instructions, the model of machine states, and
the operational semantics in this section.

2.1 Language syntax and states

The machine model and syntax of SPARCv8 assembly language are defined in
Fig. 2. The whole program configuration P consists of the code heap C, the
machine state S, and the program counters pc and npc. The code heap C is a
partial function from labels f to commands c. Labels are 32-bit integers (called
words), which can be viewed as memory addresses where the commands are
saved. Commands in SPARCv8 can be classified into two categories, the simple
instructions i and the control-transfer instructions like call and jmp.

The machine state S consists of three parts: the memory M , the register
state Q which is a pair of register file R and frame list F , and the delay buffer
D. As defined in Fig. 3, R is a partial mapping from register names to words.
Registers include the general registers r, the processor state register psr and
the special registers sr. The processor state register psr contains the integer
condition code fields n, z, v and c, which can be modified by the arithmetic and
logical instructions and used for conditional control-transfer, and cwp recording
the id of the current register window. We explain the frame list F and the delay
buffer D below.

Register windows and frame List. SPARCv8 provides 32 general registers,
which are split into four groups as global (r0 ∼ r7), out (r8 ∼ r15), local(r16 ∼

4

(RegFile) R ∈ RegName ⇀ Word (RegName) rn ::= r0 | . . . | r31 | psr | sr
(PsrReg) psr ::= n | z | v | c | cwp (SpeReg) sr ::= wim | Y | asr0 | . . . | asr31

(FrameList) F ::= nil | fm::F (Frame) fm := [w0, . . . , w7]
(DelayBuff) D ::= nil | (t, sr, w) ::D (DelayCycle) t ∈ {0, 1, . . . , X}

Fig. 3. Register File, Frame List and DelayBuffer

w7 ins

w7 locals

w7 outs

w6 ins

w6 locals

w6 outs
w5 ins

w5 locals

w5 outs

w4 ins
w4 localsw4 outs

w3 ins

w3 locals

w3 outs

w2 ins

w2 locals

w2 outsw1 ins

w1 locals

w1 outs

w0 ins
w0 locals w0 outs

CWP+1

CWP
(current window)

CWP−1

WIM

RESTORE,
RETT

SAVE,
trap

Fig. 4. Register Windows (figure taken from [2])

r23) and in (r24 ∼ r31) registers. The latter three groups (out, local and in) form
the current register window.

At the entry and exit of functions and traps, one may need to save and restore
some of the general registers as execution contexts. Instead of saving them into
stacks in memory, SPARCv8 uses multiple register windows to form a circular
stack, and does window rotation for efficient context save and restore. As shown
in Fig. 4, there are N register windows (N = 8 here) consisting of 2×N groups
of registers (each group containing 8 registers). The cwp register (part of psr)
records the id number of the current window (cwp = 0 in this example).

The in and out registers of each window are shared with its adjacent windows
for parameter passing. For example, the in registers of the w0 is the out registers
of the w1, and the out registers of the w0 is the in registers of the w7. This
explains why we need only 2×N groups of registers for N windows, while each
window consisting of three groups (out, local and in).

To save the context, the save instruction rotates the window by decrements
the cwp pointer (modulo N). So w7 becomes the current window. The out regis-

5

out
4
= [r8, . . . , r15] local

4
= [r16, . . . , r23] in

4
= [r24, . . . , r31]

R([ri, . . . , ri+k])
4
= [R(ri), . . . , R(ri+k)]

R{[ri, . . . , ri+7] fm} 4= R{ri w0} . . . {ri+7 w7}
where fm = [w0, . . . , w7]

win valid(wid, R)
4
= 2wid &R(wim) = 0

where & is the bitwise AND operation.

next cwp(wid)
4
= (wid +N − 1)%N prev cwp(wid)

4
= (wid + 1)%N

save(R,F)
4
=


(R′, F ′) if w′id = next cwp(R(cwp)),win valid(w′id, R),

F = F ′′ ·fm1 ·fm2, F
′ = R(local) ::R(in) ::F ′′,

R′′ = R{in R(out), local fm2, out fm1},
R′ = R′′{cwp w′id},

⊥ if ¬win valid(next cwp(R(cwp)), R)

restore(R,F)
4
=


(R′, F ′) if w′id = prev cwp(R(cwp)),win valid(w′id, R),

F = fm1 :: fm2 ::F ′′, F ′ = F ′′ ·R(out)·R(local),
R′′ = R{in fm2, local fm1, out R(in)},
R′ = R′′{cwp w′id},

⊥ if ¬win valid(prev cwp(R(cwp)), R)

Fig. 5. Auxiliary Definitions for Instruction save and restore

ters of w0 becomes the in registers of w7. The in and local registers of w0 become
inaccessible. This is like pushing them onto the circular stack. The restore

instruction does the inverse, which is like a stack pop.
The wim register is used as a bit vector to record the end of the stack. Each

bit in wim corresponds to a register window. The bit corresponding to the last
available window is set to 1, which means invalid. All other bits are 0 (i.e.
valid). When executing save (and restore), we need to ensure the next window
is valid. We use the assertion win valid(wid, R) defined in Fig. 5 to say the
window pointed to by wid is valid, given the value of wim in R.

We use the frame list F to model the circular stack consisting of register
windows. As defined in Fig. 3, a frame is an array of 8 words, modeling a group
of 8 registers. F consists of a sequence of frames corresponding to all the register
windows except the out, local and in registers in the current window. Then save

saves the local and in registers onto the head of F and loads the two groups
of register at the tail of F to the local and out registers (and the original out
registers becomes the in group). The restore instruction does the inverse. The
operations are defined formally in Fig. 5.

The delay buffer. The delay buffer D is a sequence of delayed writes. Because
the wr instruction does not update the target register immediately, we put the

6

write operation onto the delay buffer. A delayed write is recorded as a triple
consisting of the remaining cycles t to be delayed, the target special register sr

and the value w to be written.

Instruction sequences. We use an instruction sequence I to model a basic
block, i.e. a sequence of commands ending with a control transfer. As defined in
Fig. 2, we require that a delayed control-transfer instruction must be followed
by a simple instruction i, because the actual control-transfer occurs after the
execution of i. The end of each instruction sequence can only be jmp or retl

followed by a simple instruction i. Note that we do not view the call instruction
as the end of a basic block, since the callee is expected to return, following our
direct-style semantics for function calls. We define C[f] to extract an instruction
sequence starting from f in C below.

C[f] =



i; I C(f) = i and C[f + 4] = I
c; i c = C(f) and c = jmp a or retl

and C(f + 4) = i

c; i; I c = C(f) and c = call f or be f

and C(f + 4) = i and C[f + 8] = I
undefined otherwise

2.2 Operational Semantics

The operational semantics is taken from Wang et al. [17], but we omit features
like interrupts and traps. We show the selected rules in Fig. 6. The program
transition relation C ` (S, pc, npc) 7−→ (S′, pc′, npc′) is defined in Fig. 6 (a).
Before the execution of the instruction pointed by pc, the delayed writes in D
with 0 delay cycles are executed first. The execution of the delayed writes are
defined in the form of (R,D)⇒ (R′, D′), as shown below:

(R, nil)⇒ (R, nil)

(R,D)⇒ (R′, D′)

(R, (t+1, sr, w) ::D)⇒ (R′, (t, sr, w) ::D′)

(R,D)⇒ (R′, D′) sr ∈ dom(R)

(R, (0, sr, w) ::D)⇒ (R′{sr w}, D′)
(R,D)⇒ (R′, D′) sr 6∈ dom(R)

(R, (0, sr, w) ::D)⇒ (R′, D′)

Note that the write of sr has no effect if sr is not in the domain of R. Since
R is defined as a partial map, we can prove the following lemma.

Lemma 2.1. (R,D)⇒ (R′, D′) and R = R1]R2, if and only if there exists R′1
and R′2, such that (R1, D)⇒ (R′1, D

′), (R2, D)⇒ (R′2, D
′), and R′ = R′1]R′2.

Here the disjoint union R1]R2 represents the union of R1 and R2 if they have
disjoint domains, and undefined otherwise. This lemma is important to give
sound semantics to delay buffer related assertions, as discussed in Sec. 3.

The transition steps for individual instructions are classified into three cate-
gories: the control transfer steps (` ◦−−→), the steps for save, restore and
wr instructions (•−−→), and the steps for other simple instructions (−−→).

7

(R,D)⇒ (R′, D′)
C ` ((M, (R′, F), D′), pc, npc) ◦−−→ ((M ′, (R′′, F ′), D′′), pc′, npc′)

C ` ((M, (R,F), D), pc, npc) 7−→ ((M ′, (R′′, F ′), D′′), pc′, npc′)

(a) Program Transistion

C(pc) = i (M, (R,F), D)• i−−→ (M ′, (R′, F ′), D′)

C ` ((M, (R,F), D), pc, npc) ◦−−→ ((M ′, (R′, F ′), D′), npc, npc + 4)

C(pc) = jmp a JaKR = f

C ` ((M, (R,F), D), pc, npc) ◦−−→ ((M, (R,F), D), npc, f)

C(pc) = call f r15 ∈ dom(R)

C ` ((M, (R,F), D), pc, npc) ◦−−→ ((M, (R{r15 pc}, F), D), npc, f)

C(pc) = retl R(r15) = f

C ` ((M, (R,F), D), pc, npc) ◦−−→ ((M, (R,F), D), npc, f+8)

(b) Control Transfer Instruction Transition

(M,R)
i−→ (M ′, R′)

(M, (R,F), D)• i−−→ (M ′, (R′, F), D)

R(rs) = w1 JoKR = w2 w = w1⊕w2

sr ∈ dom(R) D′ = set delay(sr, w,D)

(M, (R,F), D)• wr rs o sr−−−−−−→ (M, (R,F), D′)

save(R,F) = (R′, F ′) JoKR = w R′′ = R′{rd R(rs)+w}

(M, (R,F), D)•
save rs o rd−−−−−−−→ (M, (R′′, F ′), D)

restore(R,F) = (R′, F ′) JoKR = w R′′ = R′{rd R(rs)+w}

(M, (R,F), D)•
restore rs o rd−−−−−−−−−→ (M, (R′′, F ′), D)

(c) Save, Restore and Wr instruction Transition

R(sr) = w rd ∈ dom(R)

(M,R)
rd sr rd−−−−−→ (M,R{rd w})

R(rs) = w1 JoKR = w2 rd ∈ dom(R)

(M,R)
add rs o rd−−−−−−−→ (M,R{rd w1+w2})

JaKR = w M(w) = w′ rd ∈ dom(R)

(M,R)
ld a rd−−−−→ (M,R{rd w′})

(d) Simple Instruction Transition

JoKR
4
=


R(r) if o = r
w if o = w,

−4096 ≤ w ≤ 4095
⊥ otherwise

JaKR
4
=


JoKR if a = o
w1+w2 if a = r+o, R(r)=w1

and JoKR = w2

⊥ otherwise

(e) Expression Semantics

Fig. 6. Selected operational semantics rules

8

The corresponding step transition relations are defined inductively in Fig. 6 (b),
(c) and (d) respectively.

Note that, after the control-transfer instructions, pc is set to npc and npc

contains the target address. This explains the one cycle delay for the control
transfer. The call instruction saves pc into the register r15, while retl uses
r15 +8 as the return address (which is the address for the second instruction
following the call). Evaluation of expressions a and o is defined as JaKR and
JoKR in Fig. 6 (e).

The wr wants to save the bitwise exclusive OR of the operands into the special
register sr, but it puts the write into the delay buffer D instead of updating R
immediately. The operation set delay(sr, w,D) is defined below:

set delay(sr, w,D)
4
= (X, sr, w) ::D

where X (0 ≤ X ≤ 3) is a predefined system parameter for the delay cycle.
The save and restore instruction rotate the register windows and update

the register file. Their operations over F and R are defined in Fig. 5.

3 Program Logic

In this section, we introduce the assertion language and program logic designed
for SPARCv8 program.

3.1 Assertions

(Asrt) p, q
4
= emp | l 7→w | rn 7→w | �t sr 7→w | p↓ | cwp 7→Lwid, F M
| p ∧ q | p ∨ q | p ∗ q | a=aw | o = w | ∀x. p | ∃x. p | . . .

Fig. 7. Syntax of Assertions

We define syntax of assertions in Fig. 7, and their semantics in Fig. 8. We
extend separation logic assertions with specifications of delay buffers and regis-
ter windows. Registers are like variables in separation logic, but are treated as
resources. The assertion emp says that the memory and the register file are both
empty. l 7→w specifies a singleton memory cell with value w stored in the address
l. rn 7→w says that rn is the only register in the register file and it contains the
value w. Also rn is not in the delay buffer. Separating conjunction p ∗ q has the
standard semantics as in separation logic.

The assertion �tsr 7→w describes a delayed write in the delay buffer D. It
describes the uncertainty of sr’s value in R, which is unknown for now but will
become w in up to t+1 cycles. We use ⇒k to represent k-step execution of
the delayed writes in D. It also requires that there be at most one delayed write
for a specific special register sr in D (i.e. noDup(sr, D)). This prevents more

9

S |= emp
4
= S.M = ∅ ∧ S.Q.R = ∅

S |= l 7→ w
4
= S.M = {l w} ∧ S.Q.R = ∅

S |= rn 7→w
4
= S.Q.R = {rn w} ∧ rn /∈ dom(S.D) ∧ S.M = ∅

S |= �tsr 7→w
4
= ∃k,R′, D′. 0 ≤ k ≤ t+1 ∧ (R,D)⇒k (R′, D′)∧

((M, (R′, F), D′) |= sr 7→w) ∧ noDup(D, sr)
where S = (M, (R,F), D)

S |= p↓ 4
= ∃R′, D′. ((M, (R′, F), D′) |= p) ∧ (R′, D′)⇒ (R,D)

where S = (M, (R,F), D)

S |= cwp 7→Lwid, F M 4= (S |= cwp 7→wid) ∧ ∃F ′. F ·F ′ = S.Q.F

S |= a=aw
4
= JaKS.Q.R = w ∧ word align(w)

S |= o=w
4
= JoKS.Q.R = w

S |= p1 ∗ p2
4
= ∃S1, S2. S1 |= p1 ∧ S2 |= p2 ∧ S = S1] S2

S1]S2
4
=


(M1∪M2, (R1∪R2, F), D) if M1⊥M2 ∧R1⊥R2∧

S1 =(M1, (R1, F), D) ∧ S2 =(M2, (R2, F), D)

undefined otherwise

dom(D)
4
=

{
{sr} ∪ dom(D′) if D = (t, sr, w) ::D′

∅ if D = nil

noDup(D, sr)
4
=


sr 6∈ dom(D′) if D = (t, sr, w) ::D′

sr 6= sr′ ∧ noDup(D′, sr) if D = (t, sr′, w) ::D′

True if D = nil

Fig. 8. Semantics of Assertions

than one delayed writes to the same register within 4 instruction cycles, which
practically have no restrictions on programming. By the semantics we have

sr 7→w =⇒ �tsr 7→w �t sr 7→w =⇒ �t+ksr 7→w

The assertion p ↓ allows us to reduce the uncertainty by executing one step
of the delayed writes. It specifies states reachable after executing one step of
delayed writes from those states satisfying p. Therefore we know:

(�0sr 7→w)↓=⇒ sr 7→w (�t+1sr 7→w)↓=⇒ �tsr 7→w

Also it’s easy to see that if p syntactically does not contain sub-terms in the
form of �tsr 7→w, then (p↓) ⇐⇒ p.

The following lemma shows ()↓ is distributive over separating conjunction.

Lemma 3.1. (p ∗ q)↓⇐⇒ (p↓) ∗ (q↓) .

The lemma can be proved following Lemma 2.1.
We use cwp 7→ Lwid, F M to describe the pointer cwp of the current register

window and the frame list as a circular stack. Note that F is just a prefix of the

10

− {(fp, fq)}
add %i0, %i1, %l7
add %l7, %i2, %l7
retl

nop

fp
4
= λ lv. (%i0 7→ lv[0]) ∗ (%i1 7→ lv[1]) ∗ (%i2 7→ lv[2])

∗%l7 7→ ∗ (r15 7→ lv[3])

fq
4
= λ lv. (%i0 7→ lv[0]) ∗ (%i1 7→ lv[1]) ∗ (%i2 7→ lv[2])

∗(%l7 7→ lv[0]+lv[1]+lv[2]) ∗ (r15 7→ lv[3])

Fig. 9. Example for Function Specification

frame list, since usually we do not need to know contents of the full list. Here
we use F ·F ′ to represent the concatenation of lists F and F ′. Therefore we have
cwp 7→Lwid, F ·F ′ M =⇒ cwp 7→Lwid, F M .

The assertions a=a w and o=w describe the value of a and o respectively.
They are intuitionistic assertions. Since a is used as an address, we also require it
to be properly aligned on a 4-byte boundary (i.e. word align, whose definition
is omitted here).

3.2 Inference Rules

The code specification θ and code heap specification Ψ are defined below:

(valList) ι ∈ list value (pAsrt) fp, fq ∈ valList→ Asrt
(CdSpec) θ ::= (fp, fq) (CdHpSpec) Ψ ::= {f θ}∗

The code heap specification Ψ maps the code labels for basic blocks to their
specifications θ, which is a pair of pre- and post-conditions. Instead of using
normal assertions, the pre- and post-conditions are assertions parameterized over
a list of values lgvl. They play the role of auxiliary variables — Feeding the pre-
and the post-conditions with the same lgvl allows us to establish relationship of
states specified in the pre- and post-conditions.

Although we assign a θ to each basic block, the post-condition does not spec-
ify the states reached at the end of the block. Instead, it specifies the condition
that needs to be specified in the future when the current function returns. This
follows the idea developed in SCAP [7], but we use the standard unary state
assertion instead of the binary state assertions used in SCAP, so that existing
proof techniques (such as Coq tactics) for standard Hoare-triples can be applied
to simplify the verification process.

We give a simple example in Fig. 9 to show a specification for a function,
which simply sums the values of the registers %i0, %i1 and %i2 and writes the
result into the register %l7. The specification (fp, fq) says that, when provided
with the same lv as argument, the function preserves the value of %i0, %i1 and
%i2, %l7 at the end contains the sum of %i0, %i1 and %i2, and the function
also preserves the value of r15, which it uses as the return address. To verify the
function, we need to prove that it satisfies (fp lv, fq lv) for all lv.

Figure 10 shows selected inference rules in our logic. The top rule CDHP
verifies the code heap C. It requires that every basic block specified in Ψ can be

11

` C : Ψ (Well-Formed Code Heap)

for all f ∈ dom(Ψ), ι : Ψ(f) = (fp, fq) Ψ ` {(fp ι, fq ι)} f : C[f]

` C : Ψ
(CDHP)

Ψ ` {(p, q)} f : I (Well-Formed Instruction Sequences)

` {p↓} i {p′} Ψ ` {(p′, q)} f+4 : I
Ψ ` {(p, q)} f : i; I

(SEQ)

p↓⇒ (a=a f
′) f′ ∈ dom(Ψ) Ψ(f′) = (fp, fq)

` {p↓↓} i {p′} ∃ι, pr. (p′ ⇒ fp ι ∗ pr) ∧ (fq ι ∗ pr ⇒ q)

Ψ ` {(p, q)} f : jmp a; i
(JMP)

f′ ∈ dom(Ψ) Ψ(f′) = (fp, fq) Ψ ` {(p′, q)} f+8 : I
p↓⇒ (r15 7→) ∗ p1 ` {(r15 7→f ∗ p1)↓} i {p2}

∃ι, pr. (p2 ⇒ fp ι ∗ pr) ∧ (fq ι ∗ pr ⇒ p′) ∧ (fq ι⇒ r15 =f)

Ψ ` {(p, q)} f : call f′; i; I
(CALL)

p↓↓⇒ (r15 7→f′) ∗ p1 ` {p1} i {p2} (r15 7→f′) ∗ p2 ⇒ q

Ψ ` {(p, q)} f : retl; i
(RETL)

` {p} i {q} (Well-Formed Instructions)

sr 7→ ∗ p⇒ (rs = w1 ∧ o = w2)

` {sr 7→ ∗ p} wr rs o sr {(�3sr 7→(w1 ⊕ w2)) ∗ p}
(WR)

` {sr 7→w ∗ rd 7→ } rd sr rd {sr 7→w ∗ rd 7→w}
(RD)

p⇒ (rs = w1 ∧ o = w2) w′id = next cwp(wid) w & 2w′
id = 0

p⇒ (cwp 7→Lwid, F · · M) ∗ (out 7→ fmo) ∗ (local 7→ fml) ∗ (in 7→ fmi) ∗ p1
(cwp 7→Lw′id, fml :: fmi ::F M) ∗ (out 7→) ∗ (local 7→) ∗ (in 7→ fmo) ∗ p1 ⇒ rd 7→ ∗ p2

` {(wim 7→w) ∗ p} save rs o rd {(wim 7→w) ∗ (rd 7→w1+w2) ∗ p2}
(SAVE)

where [ri, . . . , ri+7] 7→ [w0, . . . , w7]
4
= ri 7→w0 ∗ · · · ∗ ri+7 7→w7

and out, local and in are defined in Fig. 5.

p⇒ (rs = w1 ∧ o = w2) w′id = prev cwp(wid) w & 2w′
id = 0

p⇒ (cwp 7→Lwid, fm1 :: fm2 ::F M) ∗ (out 7→) ∗ (local 7→) ∗ (in 7→ fmi) ∗ p1
(cwp 7→Lw′id, F · · M) ∗ (out 7→ fmi) ∗ (local 7→ fm1) ∗ (in 7→ fm2) ∗ p1 ⇒ rd 7→ ∗ p2

` {(wim 7→w) ∗ p} restore rs o rd {(wim 7→w) ∗ (rd 7→w1+w2) ∗ p2}
(RESTORE)

Fig. 10. Seleted Inference Rules

12

verified with respect to the specification, with any argument ι used to instantiate
the pre- and post-conditions.

The SEQ rule is applied when meeting an instruction sequence starting with
a simple instruction i. The instruction i is verified by the corresponding well-
formed instruction rules, with the precondition p ↓ and some post-condition p′.
We use p ↓ because there is an implicit step executing delayed writes before
executing every instruction. The post-condition p′ for i is then used as the
precondition to verify the remaining part of the instruction sequence.

Delayed control transfers. We distinguish the jmp and call instructions
— The former makes an intra-function control transfer, while the latter makes
function calls. The JMP rule requires that the target address is a valid one
specified in Ψ . Starting from the precondition p, after executing the instruction
i following JMP and the corresponding delayed writes, the post-condition p′ of
i should satisfy the precondition of the target instruction sequence, with some
instantiation ι of the logical variables and a frame assertion pr. Since the target
instruction sequence of jmp is in the same function as the jmp instruction itself,
the post-condition fq specified at the target address (with the same instantiation
ι of the logical variables and the frame assertion pr) should meet the post-
condition q of the current function. As we explained before, the post-condition q
does not specify the states reached at the end of the instruction sequence (which
are specified by p′ instead).

The CALL rule is similar to the JMP rule in that it also requires the post-
condition p2 of the instruction i following the call satisfy the precondition of
the target instruction sequence, with some instantiation ι of the logical variables
and a frame assertion pr. Here we need to record that the code label f is saved in
r15 by the call instruction. When the callee returns, its post-condition fq (with
the same instantiation of auxiliary variables ι) needs to ensure r15 still contains
f, so that the callee returns to the correct address. Also the fq with the frame
pr needs to satisfy the precondition p′ for the remaining instruction sequences
of the caller.

The RETL rule simply requires that the post-condition q holds at the end of
the instruction i following retl. Also i cannot touch the register r15, therefore
r15 specified in p must be the same as in q. Since at the calling point we already
required that the post-condition of the callee guarantees r15 contains the correct
return address, we know r15 contains the correct value before retl.

Delayed writes and register windows. The bottom layer of our logic is
for well-formed instructions. The WR rule requires the ownership of the target
register sr in the precondition (sr 7→). Also it implies there is no delayed writes
to sr in the delay buffer (see the semantics defined in Fig. 8). At the end of the
delayed write, we use �3sr 7→w1 ⊕ w2 to indicate the new value will be ready
in up to 3 cycles. Since the maximum delay cycle X cannot be bigger than 3
and the value of X may vary in different systems, programmers usually take a
conservative approach to assume X = 3 for portability of code. Our rule reflects
this conservative view. The RD rule says the special register can be read only if

13

it is not in the delay buffer. The SAVE and RESTORE rules reflect the save
and recovery of the execution contexts, which is consistent with the operational
semantics of the save and restore instructions given in Figs. 5 and 6.

3.3 Semantics and Soundness

We first define the safety of instruction sequences, safe insSeq(C, S, pc, npc, q, Ψ).
It says C can execute safely from S, pc and npc until reaching the end of the
current instruction sequence (C[pc]), and q holds if C[pc] ends with the return
instruction. It is formally defined in Def. 3.2. Here we use “ 7−→n ” to represent
n-step execution.

Definition 3.2 (Safety of Instruction Sequences).
safe insSeq(C, S, pc, npc, q, Ψ) holds if and only if the following are true (we omit
the case for be here, which is similar to jmp):

– if C(pc) = i then :
• there exist S′, pc, npc′, such that C ` (S, pc, npc) 7−→ (S′, pc′, npc′),
• for any S′, pc′, npc′, if C ` (S, pc, npc) 7−→ (S′, pc′, npc′), then

safe insSeq (C, S′, pc′, npc′, q, Ψ)
– if C(pc) = jmp a then :
• there exist S′, pc′, npc′, such that C ` (S, pc, npc) 7−→2 (S′, pc′, npc′),
• for any S′, pc′, npc′, if C ` (S, pc, npc) 7−→2 (S′, pc′, npc′), then there exist

fp, fq, ι and pr, such that the following hold:
(1) npc′ = pc′+4, Ψ(pc′) = (fp, fq),
(2) S′ |= (fp ι) ∗ pr, (fq ι) ∗ pr ⇒ q.

– if C(pc) = be f then . . .
– if C(pc) = call f then :
• there exist S′, pc′, npc′, such that C ` (S, pc, npc) 7−→2 (S′, pc′, npc′),
• for any S′, pc′ and npc′, if C ` (S, pc, npc) 7−→2 (S′, pc′, npc′), then there exist

fp, fq, ι and pr, such that the following hold:
(1) npc′ = pc′+4, Ψ(pc′) = (fp, fq),
(2) S′ |= (fp ι) ∗ pr,
(3) for any S′, if S′ |= (fq ι) ∗ pr, then safe insSeq (C, S′, pc+ 8, pc+ 12, q, Ψ),
(4) for any S′, if S′ |= (fq ι), then S′.Q.R(r15) = pc.

– if C(pc) = retl then :
• there exist S′, pc′, npc′, such that C ` (S, pc, npc) 7−→2 (S′, pc′, npc′),
• for any S′, pc′ and npc′, if C ` (S, pc, npc) 7−→2 (S′, pc′, npc′), then S′ |= q,

pc′ = S′.Q.R(r15)+8, and npc′ = S′.Q.R(r15)+12.

Then we can define the semantics for well-formed instruction sequences and
well-formed code heap.

Definition 3.3 (Judgment Semantics).

– Ψ |= {(p, q)} f : I if and only if, for all C and S such that C[f] = I and
S |= p, we have safe insSeq(C, S, f, f+4, q, Ψ).

– |= C :Ψ if and only if, for all f, fp and fq such that Ψ(f) = (fp, fq), we have
Ψ |= {(fp ι, fq ι)} f :C[f] for all ι.

14

Next we define the safety safen(C, S, pc, npc, q, k) of whole program execu-
tion. It says that, starting with pc, npc and the state S, and with the depth k
of function calls, the code C either halts in less than n steps, with the final state
satisfies q, or it executes at least n steps safely. Here we say C halts if it reaches
the return point of the topmost function (when the depth k of the function call
is 0). In the definition below, the depth k increases by the call instruction and
decreases by retl (unless k = 0).

Definition 3.4 (Program Safety). safe0(C, S, pc, npc, q, k) always holds.
safen+1(C, S, pc, npc, q, k) holds if and only if the following are true:

1. if C(pc) ∈ {i, jmp a, be f}, then:
– there exist S′, pc′, npc′, such that C ` (S, pc, npc) 7−→ (S′, pc′, npc′) ;
– for any S′, pc′, npc′, if
C ` (S, pc, npc) 7−→ (S′, pc′, npc′), then safen (C, S′, pc′, npc′, q, k) ;

2. if C(pc) = call f, then:
– there exist S′, pc′, npc′ such that C ` (S, pc, npc) 7−→2 (S′, pc′, npc′) ;
– for any S′, pc′, npc′, if C ` (S, pc, npc) 7−→2 (S′, pc′, npc′),

then safen(C, S′, pc′, npc′, q, k + 1) ;
3. if C(pc) = retl, then:

– there exist S′, pc′, npc′ such that C ` (S, pc, npc) 7−→2 (S′, pc′, npc′) ;
– for any S′, pc′, npc′, if C ` (S, pc, npc) 7−→2 (S′, pc′, npc′), then

if k = 0 then
S′ |= q

else
safen(C, S′, pc′, npc′, q, k−1) .

Then the following theorem and corollary show the soundness of our logic.

Theorem 3.5 (Soundness). ` C :Ψ =⇒|= C :Ψ

Corollary 3.6 (Function Safety). If Ψ |= {(p, q)} pc : C[pc], S |= p, and
|= C :Ψ , then ∀n. safen(C, S, pc, pc+4, q, 0).

4 Verifying a Realistic Context Switch Module

We apply our program logic to verify the main body of a context switch routine
implemented in SPARCv8, which is used to save the current task’s context and
restore the new task’s context. Figure 11 shows the structure of the code.

– SwitchEntry is the entry of the module. It checks SwitchFlag to see if a
context switch is needed. If yes, it enters the Window OK block.

– Window OK checks if the current task is null (which may happen if the switch
follows the delete of the current task). If yes, it jumps to Adjust CWP, which
resets the pointer cwp of the current register window so that it points to the
last valid window. It essentially pops all the frames to empty the circular
stack of register windows. If the current task is not null, it calls reg save

to save the general registers into the TCB, and then enter the code block
Save UsedWindows to save other register windows (F in our state model).

15

SwitchEntry

Window OK
tc 6= null

tc = null

reg save

Save UsedWindows

Adjust CWP

Switch NewContext reg restore
call

retl

Fig. 11. The Structure of Context Switch Module

– Save UsedWindows saves the register windows (except the current one) into
the current task’s stack in memory.

– Switch NewContext restores the general registers and other register windows
from the new task’s TCB and its stack in memory, respectively. Then it sets
the new task as the current one.

The main complexity of the verification lies in the code manages the register
windows. To save all the register windows, Save UsedWindows repetitively re-
stores the next window into general registers (as the current window) and then
saves them into memory, until all the windows are saved.

Specification. Below we give the pre- and post-conditions (apre and apost) of
the verified module. Each of them takes 5 arguments, the id of the current task
tc, the id of the new task tn, the value flag of the SwitchFlag, the values env of
general registers and all other register windows, and the new task’s context nst
that needs to be restored.

apre(tc, tn,flag, env,nst)
4
= Env(env) ∗ (SwitchFlag 7→flag) ∗ (TaskNew 7→ tn)∗

(flag=false ∨ CurT(tc, , env)∗NoCurT(tn,nst))

apost(tc, tn,flag, env,nst)
4
= ∃env′. Env(env′) ∗ (SwitchFlag 7→ false) ∗ (TaskNew 7→ tn)∗

(flag=false ∧ p env(env)=p env(env′)
∨(CurT(tn,nst, env′) ∧ p env(env′)=nst)∗

NoCurT(tc, p env(env)))

In the specification, we use Env(env) to specify the values of general registers
and the register windows. The variable TaskNew records the identifier of the new
task. If SwitchFlag is false, we do not need any knowledge about the current and
the new tasks since there is no context switch. Otherwise we describe the state
of the current task (its TCB and stack in memory) using CurT(tc, , env), and
the saved context of the new task using NoCurT(tn,nst). Due to space limitation
we omit the detailed definitions here.

If we compare apre and apost, we can see that tn becomes the current task
(CurT(tn,nst, env′)), and its general registers and stack, specified by Env(env′),
are loaded from the saved context nst (i.e. p env(env′) = nst). Here p env(env′)
refers to the part of the environment that we want to save or restore as context.

16

Correspondingly, tc becomes non-current-thread, and part of its environment env
at the entry of the context switch is saved, as specified by NoCurT(tc, p env(env)).

We omit the code that manages interrupt and float registers in the original
system, which are not supported in our logic. The segment we verify has around
250 lines of assembly code, and we verify it by 6690 lines of Coq proof scripts.

5 Related Work and Conclusion

There has been much work on assembly or machine code verification. Most
of them do not support function calls or simply treat function calls in the
continuation-passing style where return addresses are viewed as first class code
pointers [13, 3, 10, 11, 20, 14, 16]. SCAP [7] supports assembly code verification
with various stack-based control abstractions, including function call and return.
We follow the same idea here. However, SCAP gives a syntactic-based soundness
proof by establishing the preservation of the syntactic judgment, which makes
it difficult to interact with other modules verified in different logic. Since our
goal is to verify inline assembly and link the verified code with the verified C
programs, we give a direct-style semantic model of the logic judgments. Also
SCAP is based on a simplified subset of assembly instructions, while our work
is focused on a realistically modeled subset of SPARCv8 instructions.

In terms of the support of realistic instruction sets, previous work on proof-
carrying code (PCC) and typed assembly language (TAL) mostly supports sub-
sets of x86. Myreen’s work [12] presents a framework for ARM verification based
on a realistic model (but it doesn’t support function call and return).

As part of the Foundational Proof-Carrying Code (FPCC) project [3], Tan
and Appel present a program logic Lc for reasoning about control flow in assem-
bly code [16]. Although Lc is implemented on top of SPARC machine language,
the underlying logic is a type system instead of a full-blown program logic for
functional correctness. It reasons about functions in the continuation-passing
style. Also handling SPARC features such as delayed writes or delayed control
transfers is not the focus of Lc. There has been work on mechanized semantics
of the SPARCv8 ISA. Hou et al. [21] model the SPARCv8 ISA in Isabelle/HOL.
Wang et al. [17] formalize its semantics in Coq. Our operational semantics of
SPARCv8 follows Wang et al. [17].

Ni et al. [15] verify a context switch module of 19 lines in x86 code to show
case the support of embedded code pointers (ECP) in XCAP [14]. The context
switch module we verify comes from a practical OS kernel, which is more realistic
and consists of more than 250 lines of assembly code, but our logic does not
really support the switch of return addresses, which requires further extension
like OCAP [6]. Our focus is to verify the code manages the register windows,
and the function calls made internally.

Yang and Hawblitzel [19] verify Verve, an x86 implementation of an exper-
imental operating system. Verve has two levels, the high-level TAL code and
the low-level “Nucleus” that provides primitive access to hardware and memory.
The Nucleus code is verified automatically using the Z3 SMT solver, while the

17

goal of our work is to generate machine checkable proofs. Another key difference
is the use of different ISAs. Here we give details to verify specific features of
SPARCv8 programs.

There have been many techniques and tools proposed for automated program
verification (e.g. [5, 4]). It is possible to adapt them to verify SPARCv8 code. We
propose a new program logic and do the verification in Coq mainly because the
work is part of a big project for a fully certified OS kernel for aerospace crafts
whose inline assembly is written in SPARCv8. We already have a program logic
implemented in Coq for C programs, which allows us to verify C code with Coq
proofs. Therefore we want to have a program logic for SPARCv8 so that it can
be linked with the logic for C and can generate machine-checkable Coq proofs
too. That said, many of the automated verification techniques can be applied to
reduce the manual efforts to write Coq proofs, which we would like to study in
the future work.

Conclusion. We present a program logic for SPARCv8. Our logic is based on
a realistic semantics model and supports main features of SPARCv8, including
delayed control transfer, delayed writes, and register windows. We have applied
the program logic to verify the main body of the context switch routine in
a realistic embedded OS kernel. Our current work can only handle sequential
SPARCv8 program verification for partial correctness. We will extend it for
concurrency and refinement verification in the future. Also we would like to link
the verified inline assembly with verified C code for whole system verification.

References

[1] Program logic for SPARCv8 implementation in Coq (project code). https://

github.com/jpzha/VeriSparc.

[2] SPARC. https://gaisler.com/doc/sparcv8.pdf.

[3] A. W. Appel. Foundational proof-carrying code. In Proc. 16th Annual IEEE
Symposium on Logic in Computer Science, pages 85–97, Jan 1998.

[4] J. Berdine, C. Calcagno, and P. O’Hearn. Smallfoot: Modular automatic assertion
checking with separation logic. In FMCO, 2005.

[5] J. Berdine, C. Calcagno, and P. O’Hearn. Symbolic execution with separation
logic. In APLAS, 2005.

[6] X. Feng, Z. Ni, Z. Shao, and Y. Guo. An open framework for foundational proof-
carrying code. In TLDI, pages 67–78, 2007.

[7] X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni. Modular Verification of
Assembly Code with Stack-Based Control Abstractions. In PLDI, June 2006.

[8] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. N. Wu, S.-C. Weng, H. Zhang,
and Y. Guo. Deep specifications and certified abstraction layers. In POPL, pages
595–608, Jan 2015.

[9] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elka-
duwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Win-
wood. seL4: Formal Verification of an OS Kernel. In SOSP, pages 207–220, Oct
2009.

18

https://github.com/jpzha/VeriSparc
https://github.com/jpzha/VeriSparc
https://gaisler.com/doc/sparcv8.pdf

[10] G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith, D. Walker,
S. Weirich, and S. Zdancewic. Talx86:a realistic typed assembly language. In
1999 ACM SIGPLAN Workshop on Compiler Support for System Software, pages
25–35, May 1996.

[11] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly
language. In POPL, pages 85–97, Jan 1998.

[12] M. O. Myreen and M. J. Gordon. Hoare logic for realistically modelled machine
code. In Proc. 13th International Conference on Tools and Algorithms for Con-
struction and Analysis of Systems, 2007.

[13] G. C. Necula and P. Lee. Safe Kernel Extensions Without Run-Time Checking. In
Proc.2nd USENIX Symp. on Operating System Design and Impl, pages 229–243,
1996.

[14] Z. Ni and Z. Shao. Certified Assembly Programming with Embedded Code Point-
ers. In POPL, pages 320–333, 2006.

[15] Z. Ni, D. Yu, and Z. Shao. Using XCAP to Certify Realistic Systems code: Machine
context management. In TPHOLs, Sept 2007.

[16] G. Tan and A. W. Appel. A compositional logic for control flow. In VMCAI, Jan
2006.

[17] J. Wang, M. Fu, L. Qiao, and X. Feng. Formalizing SPARCv8 Instruction Set
Architecture in Coq. In SETTA, Oct 2017.

[18] F. Xu, M. Fu, X. Feng, X. Zhang, H. Zhang, and Z. Li. A practical verification
framework for preemptive os kernels. In CAV, pages 59–79, July 2016.

[19] J. Yang and C. Hawblitzel. Safe to the last instruction: automated verification of
a type-safe operating system. In PLDI, pages 99–110, 2010.

[20] D. Yu, A. H. Nadeem, and Z. Shao. Building certified libraries for PCC : Dynamic
storage allocation. Science of Computer Programming, 50(1-3):101–127, Mar 2004.

[21] H. Zhe, D. Sanan, A. Tiu, Y. Liu, and K. C. Hoa. An executable formalisation of
the sparcv8 instruction set architecture: A case study for the leon3 processor. In
FM, 2016.

19

	Modular Verification of SPARCv8 Code

