
iCAP: Impredicative

Concurrent Abstract Predicates

Kasper Svendsen, Lars Birkedal
Aarhus University

ESOP, Grenoble
April 8, 2014

1 / 21

Introduction

Goal

I Modular reasoning about libraries with shared state.

This talk

I HOSL supports modular reasoning about libraries.

I CAP supports modular reasoning about sharing.

I Neither supports granularity abstraction.

I HOSL + CAP is more than the sum of its parts:
I Introduces a non-trivial circularity.
I Granularity abstraction is definable.

2 / 21

Outline

Modular reasoning

Circularity

Granularity abstraction

Applications and conclusion

3 / 21

Modular reasoning about libraries

I Verify libraries independently through abstract specs.

Red-black

AVL

Splay

Bin. search tree

Set

Multiset

libsspecclients

4 / 21

Modular reasoning about sharing

I Separation logic (SL) supports modular reasoning
about state through the notion of ownership.

I Classic separation logic supports resources with
ownership expressed in terms of primitive heap cells:

x 7→ 4, lst(x , 1 :: 2 :: ε), ...

I Ownership expressed in terms of ADT
concepts supports modular reasoning about ADTs.

5 / 21

Modular reasoning about sharing

I Imagine a hash-map resource, hash(x , f), that asserts

I that the current value of key k ∈ dom(f) is f (k)
I and the exclusive right to modify keys in dom(f)

I hash supports “key” local reasoning about hash-maps:

{hash(x , f) ∗ k ∈ dom(f)} x.Get(k) {r . hash(x , f) ∗ r = f (k)}
{hash(x , f) ∗ k ∈ dom(f)} x.Set(k,v) {hash(x , f [k 7→ v])}

hash(x , f] g)⇔ hash(x , f) ∗ hash(x , g)

6 / 21

Modular reasoning about sharing

I What if a client wants to share ownership of a key?

I Hash spec says nothing about atomicity of Get or Set

I Imagine Get and Set both appear to be atomic.

I Then clients do not have to worry about interleavings.

I Granularity abstraction supports modular reasoning.

7 / 21

Modular reasoning about sharing

I What if a client wants to share ownership of a key?

I Hash spec says nothing about atomicity of Get or Set

I Imagine Get and Set both appear to be atomic.

I Then clients do not have to worry about interleavings.

I Granularity abstraction supports modular reasoning.

void Set (k , v) {
l o c k (t h i s . l) ;
. . . // update the map
u n l o c k (t h i s . l) ;

}

7 / 21

Modular reasoning

Wishlist

I Ability to verify clients and libraries independently.

I A more abstract, user-definable notion of ownership.

I Granularity abstraction.

Libraries Flex. ownership Granularity abs.

HOSL X 7 7

CAP 7 X 7

iCAP X X X

Biering et al., ESOP 2005; Dinsdale-Young et al., ECOOP 2010

8 / 21

Modular reasoning

Wishlist

I Ability to verify clients and libraries independently.

I A more abstract, user-definable notion of ownership.

I Granularity abstraction.

Libraries Flex. ownership Granularity abs.

HOSL X 7 7

CAP 7 X 7

iCAP X X X

Biering et al., ESOP 2005; Dinsdale-Young et al., ECOOP 2010

8 / 21

Outline

Modular reasoning

Circularity

Granularity abstraction

Applications and conclusion

9 / 21

Circularity

Example: A lock specification

∃isLock, locked : Val× Prop→ Prop. ∀R : Prop.

{stable(R) ∗ R} new Lock() {isLock(ret,R)}
{isLock(x,R)} x.Acquire() {locked(x,R) ∗ R}

{locked(x,R) ∗ R} x.Release() {isLock(x,R)}

∀x : Val. isLock(x,R)⇔ isLock(x,R) ∗ isLock(x,R)

10 / 21

Circularity

I iCAP extends SL with shared regions and protocols.

I A protocol consists of

I a labelled transition system describing the
abstract states and operations of a shared region

I an interpretation function describing the resources
owned by the shared region in each abstract state

I Accesses to shared resources must be
atomic and obey relevant protocols.

11 / 21

Circularity

Example: A spinlock protocol

I A lock can be in one of two abstract states:

LU

Rel

Acq

I For a spinlock x, we interpret these states as follows:

I (x,R)(s) =

{
x.locked 7→ true if s = L

x.locked 7→ false ∗ R ∗ ... if s = U

12 / 21

Circularity

Example: A spinlock resource

I The spinlock resource asserts the existence
of a shared region with a spinlock protocol:

isLock(x,R) = ∃n : RId. ...

∗ x.locked 7→ true
x.locked 7→ false

∗ R ∗ ...
Rel

Acq
n

I iCAP assertions are predicates over heaps and protocols

13 / 21

Circularity

I HOSL assertions are predicates over heaps:

Prop = P(Heap)

I iCAP assertions are predicates over heaps and protocols:

Prop ≈ P(Heap × (RId ⇀fin (SId × Protocol)))

I Protocols consists of an LTS and an interp. function:

Protocol = LTS × (SId → Prop)

14 / 21

Outline

Modular reasoning

Circularity

Granularity abstraction

Applications and conclusion

15 / 21

Granularity abstraction for “free”

I What does it mean for an operation to appear atomic?

I A standard HOSL specification relates
the initial and terminal abstract state:

{stack(this, α)}Stack.Push(x){stack(this, x :: α)}

I We want to reason about the atomic instructions
that cause the abstract state to change.

16 / 21

Granularity abstraction for “free”

I What does it mean for an operation to appear atomic?

I A standard HOSL specification relates
the initial and terminal abstract state:

{stack(this, α)}Stack.Push(x){stack(this, x :: α)}

I We want to reason about the atomic instructions
that cause the abstract state to change.

Stack.Push(x)

α x :: α? ? ?

16 / 21

Granularity abstraction for “free”

I What does it mean for an operation to appear atomic?

I A standard HOSL specification relates
the initial and terminal abstract state:

{stack(this, α)}Stack.Push(x){stack(this, x :: α)}

I We want to reason about the atomic instructions
that cause the abstract state to change.

Stack.Push(x)

α x :: α? ? ?

Stack.Push(x)

α x :: αα α x :: α

16 / 21

Granularity abstraction for “free”

I We can use HOSL + CAP + phantom state to
reason about atomic update of abstract state.

I Store abstract ADT state in a phantom field.

I Let clients reason about update of abstract state
inside ADT method using higher-order quantification.

I Let clients share phantom field using shared regions.

17 / 21

Outline

Modular reasoning

Circularity

Granularity abstraction

Applications and conclusion

18 / 21

Selected applications

We have used iCAP to verify

I synchronization primitives
I spin-locks, ticket lock, seq-lock, r/w lock, barrier

I fine-grained concurrent data structures
I treiber’s stack (with helping), michael-scott queue

I higher-order reentrant concurrent event driven code
I joins library

19 / 21

Ongoing work

iCAP-TSO

I iCAP for a high-level lang. with a TSO memory model

I Two interconnected logics:
I a high-level logic for SC reasoning
I a low-level logic for TSO reasoning

I Granularity abstraction for free!

20 / 21

Conclusion

HOSL + CAP is more than the sum of its parts

I Introduces a non-trivial circularity.

I Solving the circularity gets us:
I granularity abstraction
I modular reasoning about reentrancy

almost free of charge.

iCAP

I A logic for modular reasoning about partial correctness of
concurrent, higher-order, reentrant, imperative code.

21 / 21

	Modular reasoning
	Circularity
	Granularity abstraction
	Applications and conclusion

