ICAP: Impredicative
Concurrent Abstract Predicates

Kasper Svendsen, Lars Birkedal
Aarhus University

ESOP, Grenoble
April 8, 2014

1/21

Introduction

Goal

» Modular reasoning about libraries with shared state.

This talk

» HOSL supports modular reasoning about libraries.
» CAP supports modular reasoning about sharing.

» Neither supports granularity abstraction.
» HOSL + CAP is more than the sum of its parts:

» Introduces a non-trivial circularity.
» Granularity abstraction is definable.

2/ 21

Outline

Modular reasoning

3/21

Modular reasoning about libraries

» Verify libraries independently through abstract specs.

clients spec libs

. }\ / Red-black

1 Bin. search tree.

| Multiset / ________ "\ Splay

4/21

Modular reasoning about sharing

» Separation logic (SL) supports modular reasoning
about state through the notion of ownership.

» Classic separation logic supports resources with

ownership expressed in terms of primitive heap cells:

x4 Ist(x,1::2:¢),

» Ownership expressed in terms of ADT

concepts supports modular reasoning about ADTs.

5/ 21

Modular reasoning about sharing

» Imagine a hash-map resource, hash(x, f), that asserts

» that the current value of key k € dom(f) is f(k)
» and the exclusive right to modify keys in dom(f)

» hash supports “key” local reasoning about hash-maps:

{hash(x,f)* k € dom(f)} x.Get(k) {r. hash(x,f)*r = f(k)}
{hash(x, f) * k € dom(f)} x.Set(k,v) {hash(x,f[k+— v])}

hash(x, f W g) < hash(x, f) % hash(x, g)

6/ 21

Modular reasoning about sharing

» What if a client wants to share ownership of a key?

» Hash spec says nothing about atomicity of Get or Set

» Imagine Get and Set both appear to be atomic.

» Then clients do not have to worry about interleavings.

» Granularity abstraction supports modular reasoning.

7/21

Modular reasoning about [ygig ser (k. v) {

lock (this.);
// update the map

» What if a client wants to unlock (this.1);

}

» Hash spec says nothing about a icity of Get or Set

» Imagine Get and Set both appear to be atomic.

» Then clients do not have to worry about interleavings.

» Granularity abstraction supports modular reasoning.

7/21

Modular reasoning

Wishlist

» Ability to verify clients and libraries independently.
» A more abstract, user-definable notion of ownership.

» Granularity abstraction.

8 /21

Modular reasoning

Wishlist

» Ability to verify clients and libraries independently.
» A more abstract, user-definable notion of ownership.
» Granularity abstraction.

Libraries Flex. ownership Granularity abs.

HOSL v X X
CAP X v X
iICAP v v v

8/ 21

Outline

Circularity

9/21

Circularity

Example: A lock specification

disLock, locked : Val x Prop — Prop. VR : Prop.

{stable(R) *x R} new Lock() {isLock(ret,R)}
{isLock(x,R)} x.Acquire() {locked(x,R)* R}
{locked(x,R) * R} x.Release() {isLock(x,R)}

Vx : Val. isLock(x, R) < isLock(x, R) * isLock(x, R)

10 /21

Circularity

» iCAP extends SL with shared regions and protocols.
» A protocol consists of

> a labelled transition system describing the
abstract states and operations of a shared region

» an interpretation function describing the resources
owned by the shared region in each abstract state

» Accesses to shared resources must be
atomic and obey relevant protocols.

11/ 21

Circularity

Example: A spinlock protocol

» A lock can be in one of two abstract states:

AcqQ
/\)

_/
REL

» For a spinlock x, we interpret these states as follows:

X.locked > true if s=L

I(x,R)(s) = {

X.locked — false *x Rx ... ifs=U

12 /21

Circularity

Example: A spinlock resource

» The spinlock resource asserts the existence
of a shared region with a spinlock protocol:

isLock(x, R) = 3n : RId.

Acq

X.locked —> false

* Rx* ...

—

f—

X.locked —> true

REL

» iCAP assertions are predicates over heaps and protocols

13 /21

Circularity

» HOSL assertions are predicates over heaps:
Prop = P(Heap)
» iCAP assertions are predicates over heaps and protocols:
Prop =~ P(Heap x (Rld —, (Sld x Protocol)))
» Protocols consists of an LTS and an interp. function:

Protocol = LTS x (Sld — Prop)

14 /21

Outline

Granularity abstraction

15 /21

Granularity abstraction for “free”

» What does it mean for an operation to appear atomic?

» A standard HOSL specification relates
the initial and terminal abstract state:

{stack(this, «)}Stack.Push(x) {stack(this,x :: «)}

» We want to reason about the atomic instructions
that cause the abstract state to change.

16 / 21

Granularity abstraction for “free”

« ? ? ? X«

N N N
? ? ?

+

» What does it mean fo Stack.Push(x) ic?

» A standard HOSL specification relates
the initial and terminal abstract state:

{stack(this, «)}Stack.Push(x) {stack(this,x :: «)}

» We want to reason about the atomic instructions
that cause the abstract state to change.

16 / 21

Granularity abstraction for “free”

« ? ? ? X«

N N N
? ? ?

+

» What does it mean fo Stack.Push(x) ic?

» A standard HOSL specification relates
the initial and terminal abstract state:

{stack(this, «)}Stack.Push(x) {stack(this,x :: «)}

» We want to reason about the atomic instructions
that cause the abstract state to change.

Stack.Push (x)

16 / 21

Granularity abstraction for “free”

» We can use HOSL + CAP + phantom state to
reason about atomic update of abstract state.

» Store abstract ADT state in a phantom field.

» Let clients reason about update of abstract state
inside ADT method using higher-order quantification.

» Let clients share phantom field using shared regions.

17 /21

Outline

Applications and conclusion

18 /21

Selected applications

We have used iCAP to verify

» synchronization primitives
» spin-locks, ticket lock, seqg-lock, r/w lock, barrier

» fine-grained concurrent data structures
» treiber’'s stack (with helping), michael-scott queue

» higher-order reentrant concurrent event driven code
» joins library

19 /21

Ongoing work

ICAP-TSO
» iCAP for a high-level lang. with a TSO memory model

» Two interconnected logics:

» a high-level logic for SC reasoning
> a low-level logic for TSO reasoning

» Granularity abstraction for free!

20 / 21

Conclusion

HOSL + CAP is more than the sum of its parts
» Introduces a non-trivial circularity.

» Solving the circularity gets us:

» granularity abstraction
» modular reasoning about reentrancy

almost free of charge.

iCAP

» A logic for modular reasoning about partial correctness of
concurrent, higher-order, reentrant, imperative code.

21 /21

	Modular reasoning
	Circularity
	Granularity abstraction
	Applications and conclusion

