
Impredicative

Concurrent Abstract Predicates

Kasper Svendsen, Lars Birkedal
Aarhus University

September 28, 2013

1 / 14

Introduction

Goal

I A logic for modular reasoning about partial correctness of
concurrent, higher-order, reentrant, imperative code.

I Modular library specifications that supports
layering of abstractions and recursive abstractions.

2 / 14

Introduction

Goal

I A logic for modular reasoning about partial correctness of
concurrent, higher-order, reentrant, imperative code.

I Modular library specifications that supports
layering of abstractions and recursive abstractions.

2 / 14

Introduction

Goal

I A logic for modular reasoning about partial correctness of
concurrent, higher-order, reentrant, imperative code.

I Modular library specifications that supports
layering of abstractions and recursive abstractions.

Lock

LinkedList HashMap

2 / 14

Introduction

Goal

I A logic for modular reasoning about partial correctness of
concurrent, higher-order, reentrant, imperative code.

I Modular library specifications that supports
layering of abstractions and recursive abstractions.

Lock

LinkedList HashMap

M1

M2

2 / 14

A Modular Lock Specification

∃isLock, locked : Val× Prop→ Prop. ∀R : Prop. stable(R)⇒

{R} new Lock() {isLock(ret,R)}
{isLock(x,R)} x.Acquire() {locked(x,R) ∗ R}

{locked(x,R) ∗ R} x.Release() {isLock(x,R)}

∀x : Val. isLock(x,R)⇔ isLock(x,R) ∗ isLock(x,R)

∀x : Val. stable(isLock(x,R)) ∧ stable(locked(x,R))

3 / 14

A Modular Lock Specification

∃isLock, locked : Val× Prop→ Prop. ∀R : Prop. stable(R)⇒

{R} new Lock() {isLock(ret,R)}
{isLock(x,R)} x.Acquire() {locked(x,R) ∗ R}

{locked(x,R) ∗ R} x.Release() {isLock(x,R)}

∀x : Val. isLock(x,R)⇔ isLock(x,R) ∗ isLock(x,R)

∀x : Val. stable(isLock(x,R)) ∧ stable(locked(x,R))

Standard sep. logic lock specification
The resource invariant R describes the

resources protected by the lock.

3 / 14

A Modular Lock Specification

∃isLock, locked : Val× Prop→ Prop. ∀R : Prop. stable(R)⇒

{R} new Lock() {isLock(ret,R)}
{isLock(x,R)} x.Acquire() {locked(x,R) ∗ R}

{locked(x,R) ∗ R} x.Release() {isLock(x,R)}

∀x : Val. isLock(x,R)⇔ isLock(x,R) ∗ isLock(x,R)

∀x : Val. stable(isLock(x,R)) ∧ stable(locked(x,R))

3 / 14

A Modular Lock Specification

∃isLock, locked : Val× Prop→ Prop. ∀R : Prop. stable(R)⇒

{R} new Lock() {isLock(ret,R)}
{isLock(x,R)} x.Acquire() {locked(x,R) ∗ R}

{locked(x,R) ∗ R} x.Release() {isLock(x,R)}

∀x : Val. isLock(x,R)⇔ isLock(x,R) ∗ isLock(x,R)

∀x : Val. stable(isLock(x,R)) ∧ stable(locked(x,R))

Third-order quantification.

3 / 14

A Modular Lock Specification

∀R : Prop. ∃isLock, locked : Val→ Prop. stable(R)⇒

{R} new Lock() {isLock(ret)}
{isLock(x)} x.Acquire() {locked(x) ∗ R}

{locked(x) ∗ R} x.Release() {isLock(x)}

∀x : Val. isLock(x)⇔ isLock(x) ∗ isLock(x)

∀x : Val. stable(isLock(x)) ∧ stable(locked(x))

3 / 14

A Modular Lock Specification

∀R : Prop. ∃isLock, locked : Val→ Prop. stable(R)⇒

{R} new Lock() {isLock(ret)}
{isLock(x)} x.Acquire() {locked(x) ∗ R}

{locked(x) ∗ R} x.Release() {isLock(x)}

∀x : Val. isLock(x)⇔ isLock(x) ∗ isLock(x)

∀x : Val. stable(isLock(x)) ∧ stable(locked(x))

Second-order quantification.

3 / 14

A Modular Lock Specification

∀R : Prop. ∃isLock, locked : Val→ Prop. stable(R)⇒

{R} new Lock() {isLock(ret)}
{isLock(x)} x.Acquire() {locked(x) ∗ R}

{locked(x) ∗ R} x.Release() {isLock(x)}

∀x : Val. isLock(x)⇔ isLock(x) ∗ isLock(x)

∀x : Val. stable(isLock(x)) ∧ stable(locked(x))

This specification might suffice for layering of
abstractions, but not for all recursive abstractions.

3 / 14

Recursive Abstractions

Reentrant Event Loop Library

delegate void h a n d l e r () ;

i n t e r f a c e IEventLoop {
void l o o p () ;
void s i g n a l () ;
void when (h a n d l e r f) ;

}

4 / 14

Recursive Abstractions

Reentrant Event Loop Library

delegate void h a n d l e r () ;

i n t e r f a c e IEventLoop {
void l o o p () ;
void s i g n a l () ;
void when (h a n d l e r f) ;

}

Event handlers are
allowed to emit events!

4 / 14

Recursive Abstractions

Reentrant Event Loop Library

delegate void h a n d l e r () ;

i n t e r f a c e IEventLoop {
void l o o p () ;
void s i g n a l () ;
void when (h a n d l e r f) ;

}

Event handlers are
allowed to emit events!

A library that allows us to
close Landin’s Knot / perform

recursion through the store.

4 / 14

Recursive Abstractions

Reentrant Event Loop Library

delegate void h a n d l e r () ;

i n t e r f a c e IEventLoop {
void l o o p () ;
void s i g n a l () ;
void when (h a n d l e r f) ;

}

Event handlers are
allowed to emit events!

A library that allows us to
close Landin’s Knot / perform

recursion through the store.

Realistic examples of this form:
libevent, Node.js, Twisted, ...

C5, GUI libraries, Joins library, ...

4 / 14

Recursive Abstractions

Event Loop Memory Safety Specification

∃eloop : Val→ Prop.

{emp} new EventLoop() {eloop(ret)}
{eloop(x)} x.loop() {eloop(x)}
{eloop(x)} x.signal() {eloop(x)}

{eloop(x) ∗ P} x.when(f) {eloop(x)}

∀x : Val. eloop(x)⇔ eloop(x) ∗ eloop(x)

where P = f 7→ {emp}{emp}

5 / 14

Recursive Abstractions

Event Loop Memory Safety Specification

∃eloop : Val→ Prop.

{emp} new EventLoop() {eloop(ret)}
{eloop(x)} x.loop() {eloop(x)}
{eloop(x)} x.signal() {eloop(x)}

{eloop(x) ∗ P} x.when(f) {eloop(x)}

∀x : Val. eloop(x)⇔ eloop(x) ∗ eloop(x)

where P = f 7→ {emp}{emp}

Event handler must run without any resources and
emitting an event requires an eloop(x) resource!

5 / 14

Recursive Abstractions

Reentrant Event Loop Memory Safety Specification

∃eloop : Val→ Prop.

{emp} new EventLoop() {eloop(ret)}
{eloop(x)} x.loop() {eloop(x)}
{eloop(x)} x.signal() {eloop(x)}

{eloop(x) ∗ P} x.when(f) {eloop(x)}

∀x : Val. eloop(x)⇔ eloop(x) ∗ eloop(x)

where P = f 7→ {eloop(x)}{emp}

5 / 14

Recursive Abstractions

Verifying a lock-based event loop implementation

I Since we are interested in memory safety, eloop has to
specify the memory footprint of the event loop.

I Since an event loop can call handlers, its footprint include
the footprint of its handlers.

I Since handlers can signal events, the footprint of handlers
include the footprint of their event loop.

I The footprint of an event loop is thus recursively defined.

6 / 14

Recursive Abstractions

Verifying a lock-based event loop implementation

I Since we are interested in memory safety, eloop has to
specify the memory footprint of the event loop.

I Since an event loop can call handlers, its footprint include
the footprint of its handlers.

I Since handlers can signal events, the footprint of handlers
include the footprint of their event loop.

I The footprint of an event loop is thus recursively defined.

6 / 14

Recursive Abstractions

Verifying a lock-based event loop implementation

I Since we are interested in memory safety, eloop has to
specify the memory footprint of the event loop.

I Since an event loop can call handlers, its footprint include
the footprint of its handlers.

I Since handlers can signal events, the footprint of handlers
include the footprint of their event loop.

I The footprint of an event loop is thus recursively defined.

6 / 14

Recursive Abstractions

Verifying a lock-based event loop implementation

I Imagine an implementation that maintains a set of signal
handlers and a set of pending signals, protected by a lock:

c l a s s EventLoop : IEventLoop {
p r i v a t e Lock l o c k ;
p r i v a t e Set<h a n d l e r> h a n d l e r s ;
p r i v a t e Set<s i g n a l> s i g n a l s ;

. . .
}

I Tying Landin’s Knot using a reference protected by a lock.

7 / 14

Recursive Abstractions

Verifying a lock-based event loop implementation

I The footprint of an event loop is thus recursively
defined and the recursion “goes through the lock”.

I We define eloop using guarded recursion and the
third-order isLock representation predicate:

eloop =fix(λeloop : Val→ Prop. λx : Val.

∃l . x.lock 7→ l ∗
isLock(l , ∃y, z,A,B. set(y,A) ∗ set(z,B)

∗ x.handlers 7→ y ∗ x.signals 7→ z

∗ ∀a ∈ A. . a 7→ {eloop(x)}{emp}))

8 / 14

Recursive Abstractions

Verifying a lock-based event loop implementation

I The footprint of an event loop is thus recursively
defined and the recursion “goes through the lock”.

I We define eloop using guarded recursion and the
third-order isLock representation predicate:

eloop =fix(λeloop : Val→ Prop. λx : Val.

∃l . x.lock 7→ l ∗
isLock(l , ∃y, z,A,B. set(y,A) ∗ set(z,B)

∗ x.handlers 7→ y ∗ x.signals 7→ z

∗ ∀a ∈ A. . a 7→ {eloop(x)}{emp}))

8 / 14

Recursive Abstractions

Verifying a lock-based event loop implementation

I The footprint of an event loop is thus recursively
defined and the recursion “goes through the lock”.

I We define eloop using guarded recursion and the
third-order isLock representation predicate:

eloop =fix(λeloop : Val→ Prop. λx : Val.

∃l . x.lock 7→ l ∗
isLock(l , ∃y, z,A,B. set(y,A) ∗ set(z,B)

∗ x.handlers 7→ y ∗ x.signals 7→ z

∗ ∀a ∈ A. . a 7→ {eloop(x)}{emp}))

8 / 14

Recursive Abstractions

Verifying a lock-based event loop implementation

I The footprint of an event loop is thus recursively
defined and the recursion “goes through the lock”.

I We define eloop using guarded recursion and the
third-order isLock representation predicate:

eloop =fix(λeloop : Val→ Prop. λx : Val.

∃l . x.lock 7→ l ∗
isLock(l , ∃y, z,A,B. set(y,A) ∗ set(z,B)

∗ x.handlers 7→ y ∗ x.signals 7→ z

∗ ∀a ∈ A. . a 7→ {eloop(x)}{emp}))

8 / 14

Recursive Abstractions

Verifying a lock-based event loop implementation

I The footprint of an event loop is thus recursively
defined and the recursion “goes through the lock”.

I We define eloop using guarded recursion and the
third-order isLock representation predicate:

eloop =fix(λeloop : Val→ Prop. λx : Val.

∃l . x.lock 7→ l ∗
isLock(l , ∃y, z,A,B. set(y,A) ∗ set(z,B)

∗ x.handlers 7→ y ∗ x.signals 7→ z

∗ ∀a ∈ A. . a 7→ {eloop(x)}{emp}))

8 / 14

Recursive Abstractions

Verifying a lock-based event loop implementation

I The footprint of an event loop is thus recursively
defined and the recursion “goes through the lock”.

I We define eloop using guarded recursion and the
third-order isLock representation predicate:

eloop =fix(λeloop : Val→ Prop. λx : Val.

∃l . x.lock 7→ l ∗
isLock(l , ∃y, z,A,B. set(y,A) ∗ set(z,B)

∗ x.handlers 7→ y ∗ x.signals 7→ z

∗ ∀a ∈ A. . a 7→ {eloop(x)}{emp}))

8 / 14

Recursive Abstractions

Verifying a lock-based event loop implementation

I The footprint of an event loop is thus recursively
defined and the recursion “goes through the lock”.

I We define eloop using guarded recursion and the
third-order isLock representation predicate:

eloop =fix(λeloop : Val→ Prop. λx : Val.

∃l . x.lock 7→ l ∗
isLock(l , ∃y, z,A,B. set(y,A) ∗ set(z,B)

∗ x.handlers 7→ y ∗ x.signals 7→ z

∗ ∀a ∈ A. . a 7→ {eloop(x)}{emp}))

Must be non-expansive!

8 / 14

iCAP
Reasoning about shared state

I Following CAP, iCAP extends separation logic with
shared regions and protocols to govern shared state.

I The state is split into a local part and shared regions.

local region 1 region 2

9 / 14

iCAP
Reasoning about shared state

I Following CAP, iCAP extends separation logic with
shared regions and protocols to govern shared state.

I The state is split into a local part and shared regions.

x 7→ 1

α1

α2
β2

β1

A labelled transition system specifies the
possible abstract states of the shared region.

9 / 14

iCAP
Reasoning about shared state

I Following CAP, iCAP extends separation logic with
shared regions and protocols to govern shared state.

I The state is split into a local part and shared regions.

x 7→ 1

α1

α2
β2

β1

Each region is in exactly one abstract
state at any given point in time.

9 / 14

iCAP
Reasoning about shared state

I Following CAP, iCAP extends separation logic with
shared regions and protocols to govern shared state.

I The state is split into a local part and shared regions.

x 7→ 1 p1 p2
α1

α2

q1

q2

q3

β2

β1

A predicate that defines the resources owned by
the shared region in the given abstract state.

9 / 14

A Modular Lock Specification

Verifying a spinlock implementation

I Upon allocating a lock, we allocate a shared region to
govern the sharing of the lock and through the lock.

I A lock can be in one of two abstract states:

LockedUnlocked

Unlock

Lock

10 / 14

A Modular Lock Specification

Verifying a spinlock implementation

I Upon allocating a lock, we allocate a shared region to
govern the sharing of the lock and through the lock.

I A lock can be in one of two abstract states:

LockedUnlocked

Unlock

Lock

10 / 14

A Modular Lock Specification

Verifying a spinlock implementation

I Upon allocating a lock, we allocate a shared region to
govern the sharing of the lock and through the lock.

I A lock can be in one of two abstract states:

LockedUnlocked

Unlock

Lock

x. locked 7→ true

10 / 14

A Modular Lock Specification

Verifying a spinlock implementation

I Upon allocating a lock, we allocate a shared region to
govern the sharing of the lock and through the lock.

I A lock can be in one of two abstract states:

LockedUnlocked

Unlock

Lock

x. locked 7→ truex. locked 7→ false ∗ R ∗ ...

10 / 14

A Modular Lock Specification

Verifying a spinlock implementation
Formally

isLock(x,R) = ∃n : RId. [Lock]n ∗ rintr(I(x,R, n), n)

∗ LU

Unlock

Lock
n

where

I (x,R, n)(s) =

{
x.locked 7→ true if s = L

x.locked 7→ false ∗ R ∗ [Unlock]n
1 if s = U

11 / 14

A Modular Lock Specification

Verifying a spinlock implementation
Formally

isLock(x,R) = ∃n : RId. [Lock]n ∗ rintr(I(x,R, n), n)

∗ LU

Unlock

Lock
n

where

I (x,R, n)(s) =

{
x.locked 7→ true if s = L

x.locked 7→ false ∗ R ∗ [Unlock]n
1 if s = U

rintr : (SId→ Prop)× RId→ Prop

11 / 14

Model

Impredicative protocols introduce a circularity

I rintr(I , n) : Prop, asserts that the interpretation of the
abstract states of region n are given by I : SId→ Prop

Prop ∼= P↑(...× (RId× SId⇀fin Prop))

I We (implicitly) use step-indexing to solve the circularity.
We define the model using the internal lang. of the topos
of trees.

I iCAP function space is the topos of trees function space:

[[τ → σ]] = [[τ]]→ [[σ]]

12 / 14

Model

Impredicative protocols introduce a circularity

I rintr(I , n) : Prop, asserts that the interpretation of the
abstract states of region n are given by I : SId→ Prop

Prop ∼= P↑(...× (RId× SId⇀fin Prop))

I We (implicitly) use step-indexing to solve the circularity.
We define the model using the internal lang. of the topos
of trees.

I iCAP function space is the topos of trees function space:

[[τ → σ]] = [[τ]]→ [[σ]]

12 / 14

Model

Impredicative protocols introduce a circularity

I rintr(I , n) : Prop, asserts that the interpretation of the
abstract states of region n are given by I : SId→ Prop

Prop ∼= P↑(...× (RId× SId⇀fin Prop))

I We (implicitly) use step-indexing to solve the circularity.
We define the model using the internal lang. of the topos
of trees.

I iCAP function space is the topos of trees function space:

[[τ → σ]] = [[τ]]→ [[σ]]

iCAP function space Topos of trees function space

12 / 14

Related work

CAP

I [Dodds et al., POPL 2011] was unsound, because the
authors broke the circularity introduced by impredicative
protocols, but reasoned as if they had solved it.

I In HOCAP [ESOP 2013] we broke the circularity and
introduced a predicative stratification to ensure
soundness.

CaReSL [Turon et al., ICFP 2013]

I Model related to iCAP model, but logic is only
second-order, so types of CaReSL can be interpreted as
constant sets (in iCAP they are variable sets, objects in
topos of trees).

13 / 14

Conclusion

Recursive abstractions

I Recursive abstractions are useful and ubiquitous in
higher-order code with effects!

I We can reason about recursive abstractions using
higher-order specifications and guarded recursion.

iCAP

I A logic for modular reasoning about partial correctness of
concurrent, higher-order, reentrant, imperative code.

14 / 14

